
Depth Estimation from Monocular Image
using Convolutional Neural Network

Saurav Sharma

Department of Computer Science and Engineering
National Institute of Technology Rourkela



Depth Estimation from Monocular Image
using Convolutional Neural Network

Thesis submitted in partial fulfillment

of the requirements of the degree of

Master of Technology

in

Computer Science and Engineering
(Specialization: Computer Science)

by

Saurav Sharma
(Roll Number: 215CS1074)

based on research carried out

under the supervision of

Prof. Pankaj Kumar Sa

May, 2017

Department of Computer Science and Engineering
National Institute of Technology Rourkela



Department of Computer Science and Engineering
National Institute of Technology Rourkela

Prof. Pankaj Kumar Sa
Assistant Professor

May 20, 2017

Supervisor’s Certificate

This is to certify that the work presented in the thesis entitled Depth Estimation from
Monocular Image using Convolutional Neural Network submitted by Saurav Sharma, Roll
Number 215CS1074, is a record of original research carried out by him under my supervision
and guidance in partial fulfillment of the requirements of the degree ofMaster of Technology
in Computer Science and Engineering. Neither this thesis nor any part of it has been
submitted earlier for any degree or diploma to any institute or university in India or abroad.

Pankaj Kumar Sa



Dedication

To my mother who always wanted me to do post-graduation.
To my father who never give up on me and for constant source of encouragement.
To Almighty for providing me strength and calmness to overcome my fears.



Declaration of Originality

I, Saurav Sharma, Roll Number 215CS1074 hereby declare that this thesis entitled Depth
Estimation from Monocular Image using Convolutional Neural Network presents my
original work carried out as a postgraduate student of NIT Rourkela and, to the best of
my knowledge, contains no material previously published or written by another person, nor
any material presented by me for the award of any degree or diploma of NIT Rourkela or
any other institution. Any contribution made to this research by others, with whom I have
worked at NIT Rourkela or elsewhere, is explicitly acknowledged in the dissertation. Works
of other authors cited in this dissertation have been duly acknowledged under the sections
“Reference” or “Bibliography”. I have also submitted my original research records to the
scrutiny committee for evaluation of my dissertation.

I am fully aware that in case of any non-compliance detected in future, the Senate of NIT
Rourkela may withdraw the degree awarded to me on the basis of the present dissertation.

May 20, 2017
NIT Rourkela

Saurav Sharma



Acknowledgment

This thesis is a culmination of a year of failures, success, endless discussions and constant
motivation of several people around me. Simply naming them would not be enough to
justify their contribution in shaping the thesis.

My sincere gratitude to my advisor Prof. Pankaj Kumar Sa for allowing me to pursue my
interests and motivating me to go beyond limits. His constant guidance and support helped
me evolve as a researcher.

Sincere thanks to Prof. B. D. Sahoo and Prof. S. Bakshi for instilling the right mindset for
solving problems.

My humble acknowledgment to the Head of Department, Prof. D. P. Mohapatra for
allowing me to use lab resources for carrying out research.

Immense regard for my PhD seniors Ram P. Padhy and Suman K. Choudhury who stood
with me throughout the research and guided me whenever needed. Many thanks to my
friends and other research fellows for being with me.

Finally, my eternal gratefulness to my beloved parents for their love, support and constant
push to reach my goals. Forever thankful for the sacrifices they made for my betterment.

May 27, 2017
NIT Rourkela

Saurav Sharma
Roll Number: 215CS1074



Abstract

Estimating depth from an image is an important task for understanding physical geometry of
a scene. It becomes challenging when only single images are considered for estimation due
to lack of depth cues in a single input image. In this thesis, a fully convolutional architecture
is proposed which learns the complex mapping of the pixels in the input RGB image and its
corresponding depth image. The architecture employs DenseNet, a state-of-the-art CNN
with an added network of deconvolution layers to estimate the depth image. It is free
from any post-processing layers like CRF which increases the time taken for estimation
on test data. Transfer learning paradigm is used in which pre-trained CNN are fine-tuned
for depth estimation task. The proposed architecture inherently performs feature reuse and
feature propagation without needing multiple scales of convolution layers. The network is
evaluated on NYU Depth V2 indoor dataset consisting of multiple video frames of different
indoor environments taken fromMicrosoft Kinect camera. The unified architecture is trained
end-to-end and optimization performance are compared for berHu and RMSE loss functions.
Exhaustive simulation on benchmark dataset not only reveals the superiority of the proposed
model over the current state-of-the-art but also requires significantly less number of training
samples for convergence.

Keywords: Depth Estimation; Deep Learning; Monocular Image; Convolutional Neural
Network.



Contents

Supervisor’s Certificate ii

Dedication iii

Declaration of Originality iv

Acknowledgment v

Abstract vi

List of Figures ix

List of Tables xi

1 Introduction 1
1.1 Rise of Deep Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Convolutional Neural Network . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Components of Convolutional Neural Network . . . . . . . . . . . . . . . 3

1.3.1 Convolution Layer . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3.2 Pooling Layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3.3 Fully Connected Layer . . . . . . . . . . . . . . . . . . . . . . . . 7
1.3.4 Activation Layer . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.3.5 Regularization Layer . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.3.6 Batch-Normalization . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.4 Thesis Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2 Literature Survey 13

3 Architectural Overview of Convolution Neural Networks 17
3.1 LeNet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.2 AlexNet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.3 VGGNet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.4 ResNet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.5 DenseNet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

vii



4 Depth Estimation using Fully Convolutional Architecture 25
4.1 Proposed Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.2 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

5 Conclusion 32

References 34

viii



List of Figures

1.1 LeNet Architecture taken from deeplearning.net . . . . . . . . . . . . . . . 3
1.2 Comparison between convolutional layers with locally connected and fully

connected regions. Source: www.deeplearning.net . . . . . . . . . . . . . 4
1.3 Pooling layer downsamples the volume spatially, independently in each

depth slice of the input volume. Left: In this example, the input volume of
size [240x320x64] is pooled with filter size 2, stride 2 into output volume of
size [120x160x64]. Notice that the volume depth is preserved. Right: The
most common downsampling operation is max, giving rise tomax pooling,
here shown with a stride of 2. That is, each max is taken over 4 numbers
(little 2x2 square). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.4 Activation Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.5 Dropout example. Left: Neural network without dropout. Right: Neural

network with randomly dropped links between neurons of successive layers. 11

3.1 A forward pass in LeNet Architecture. Source: LeCun et al. [1]. . . . . . . 18
3.2 AlexNet Architecture, 2012 trained on ImageNet dataset. . . . . . . . . . . 18
3.3 VGGNet Architecture, 2014 trained on ImageNet dataset. . . . . . . . . . . 19
3.4 Building Blocks of ResNet, 2015 trained on ImageNet dataset. Left: with 2

convolution layers. Right: with 2 convolution layers including a bottleneck
layer. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.5 ResNet modules Left: without pre-activation. Right: with pre-activation. . 22
3.6 An dense block with n dense layers. Each layer takes all preceding feature

maps as input. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4.1 Proposed fully convolutional architecture. Stage (1): DenseNet-161 model
accepts input image of size 320×240×3 and produces a feature map of size
10× 7× 2208. Stage (2): a bootleneck layer reduces the number of feature
maps: 10 × 7 × 2208 to 10 × 7 × 512 (Green box). Stage (3): a sequence
of four deconvolution layer up-samples the spatial resolution of feature map
: 10× 7× 512 to 175× 127 (Deconvolution outputs in red boxes). Bottom
row depicts the the schematic diagram of a Dense Block; DBn represents a
Dense Block with n layers. . . . . . . . . . . . . . . . . . . . . . . . . . . 27

ix



4.2 Training Loss Curve for RMSE and berHu loss functions. . . . . . . . . . 30
4.3 Prediction results of sample images by our proposed architecture on NYU

Depth V2 dataset. The figure shows (a) input image (b) predicted depth
image (c) ground depth image (d) absolute error map. For better comparison,
all the colormaps are scaled equally. . . . . . . . . . . . . . . . . . . . . . 31

x



List of Tables

4.1 Comparative analysis of various methods on NYU Depth V2 dataset. . . . . 30

xi



Chapter 1

Introduction

1.1 Rise of Deep Learning

Deep learning over the years has become a household name among artificial intelligence
communities. Its stellar use in computer vision problems has resulted in huge improvements
over its counterpart pre deep learning methods. Before that, computer vision problems were
mostly solved by shallow machine learning algorithms such as Support Vector Machines
(SVM),Multi-layer perceptron with one hidden layer etc. These shallow learning algorithms
relied on fewer mappings of the input features to output label compared to deep learning
algorithms which incorporate a large number of mappings. Different computer vision
problems demand a different set of features like color, textures, edge orientation, etc. For
example, features generated with SIFT algorithm are used in iris recognition and HOG
features are used in pedestrian detection. So, same features cannot be used for other types of
datasets. Engineering features is a time-consuming task and it requires considerable domain
expertise and it may not be feasible nowadays for a wide range of computer vision problems.
This was the reason feature learning was getting more importance than feature engineering.
In feature learning, the algorithm learns to extract features from a given dataset and it is done
automatically.

Deep learning is a technique where multiple layers are used in an architecture to learn
the mapping of input features to their corresponding target label. The features from a layer
are stacked together, passed through a non-linear function to extract information of higher
complexity from the data. For example, extracting edge, blobs requires less number of layers,
but to extract a face or an object from input data will require features at multiple levels.
Much of the success in deep learning methods can be attributed to two major components -
large size dataset and GPU computing. Over the years, computational resources required to
implement deep learning methods have become cheaper and more research has been done in
deep learning since then. Initial deep learning based architectures suffered from problems
such as vanishing (exploding) gradients, overfitting, unavailability of fast optimizers, etc.
Vanishing (exploding) gradient problem is solved by using ReLU as the activation function.
Dropout and batch-normalization layers have prevented overfitting of the network and the

1



Chapter 1 Introduction

training has become faster. Optimizers such as RMSProp, SGD and its variants like Adam,
AdaDelta etc. have resulted in the faster convergence of the network.

Recently, in deep learning, transfer learning method is applied when large-scale datasets
are not available. In transfer learning method, a network pre-trained for a problem can be
used for other similar problem. It usually works because the pre-trained network has the
knowledge to extract relevant features from the data. The network can later be trained on
problem-specific dataset requiring less time for convergence. Nowadays, deep architectures
are usually trained on ImageNet, CIFAR datasets and their weights are used for training on
a different dataset.

1.2 Convolutional Neural Network

In the early experiments performed by Hubel andWeisel [2] in 1968 on cat’s visual cortex, it
was found that many cells are structured together in a complex manner where each of these
cells responds to a local region of the visual field. These cells are thus formed by sliding over
the local regions of the visual field by behaving as a local filter to find structural similarity in
an image. This and other sets of experiments based on this work were the fundamental ideas
behind the emergence of convolution neural network. Convolution Neural Network (CNN)
is a special type of architecture where the spatial structure of pixel values in the input image
are exploited for recognizing patterns in an image compared to a regular neural network
where all the pixels in the image taken at input layer are weighted equally. CNN works
on the input image by producing output feature map where each of the values in the output
feature map corresponds the output obtained from the overlapping regions in the input layer.

Convolution neural network has many advantages compared to a regular neural network.
Since convolution neural network works on local regions of the input image, training of the
network becomes faster. This would lead to an explosion in the number of parameters due to
which overfitting of the network can occur. CNN are constrained to be used for images only
where the features learned over the local regions forms a volume of output neurons ordered
across the depth, width, and height.

These features are learned by convolving a parameterized filter over the local regions.
To further reduce the number of parameters involved in a CNN, a filter typically has same
weights across the input image volume. This is based on the assumption that a filter can be
used in other spatial locations of the image for identifying a feature which was found in other
spatial location.

Using CNN in majority of the computer vision problems is greatly improving the
performance of the models used in tackling these problems. Earlier models based on
hand-crafted features are slower compared to CNN as they require extra time in manually
finding and accumulating the features to fit into the model. Also, crafting these features
manually requires a huge domain expertise. CNN avoids these by learning features on its

2



Chapter 1 Introduction

Figure 1.1: LeNet Architecture taken from deeplearning.net

own from the input images using the raw pixels only. The spatial structure and correlation
between adjacent pixels in an input image helps the model to find features in layers that
build upon features found in previous layers. This leads to an efficient representation of the
features across varied degree of complexity level i.e. from lower to higher. For example,
features like edges in the case of human face as input image are combined to form middle
level features like ears, noses which are combined to form higher level features like different
possible structure of faces. Figure 1.1 shows a CNN based LeNet architecture where the
different components of CNN are stacked together for performing computer vision task.

1.3 Components of Convolutional Neural Network

Convolutional neural network can be build by stacking number of layers which are
mainly Convolution layer, Pooling Layer, Activation Layer, Regularization Layer and Fully
Connected Layer. Convolution and Pooling layers are the primitive layers used majority of
the time in all of the CNN based deep learning architectures. Each of these layers transform
an input feature volume to an output volume feature volume by means of non-linear and
differentiable functions. Each of these components along with activation functions and
regularization functions are discussed in this chapter.

1.3.1 Convolution Layer

Convolution layer is the basic module used for constructing any CNN based architecture. It
primarily operates on images as input feature volume with dimensions such as width, height,
and depth. A single convolution layer may consist of one or more parameterized filters
(kernels) which scan all the local regions in the input volume and look for features present
in these regions.In the forward propagation, a filter is convolved with all the local regions
present in an input feature volume one at a time. It basically performs convolution operation
of the filter parameters with the feature values in a local region. This produces a single
output for a single local region. So, convolving a single filter through all the local regions in
an input feature volume produces an output feature map of 2 dimensions. A filter operates
on the input feature volume across its depth. The depth of the filter used in a convolution

3



Chapter 1 Introduction

Figure 1.2: Comparison between convolutional layers with locally connected and fully
connected regions. Source: www.deeplearning.net

layer depends on the depth of the input feature volume on which it is convolved. The output
feature maps generated for each convolution operation by a set of filters are stacked together
to form a bigger output feature volume. Other layers in a CNN architecture operate on this
stacked feature volume. Convolution layers or CNN architecture, in general, exploit two
important ideas which are localized connections and parameter sharing.

In a convolution layer, the filters operate on the local region of the input feature volume.
Compared to a regular neural network where there is a mapping from all the neurons in
layer Li to an output neuron in layer Li+1, convolution layer maps a local region to an
output neuron in the next layer. These parametric links in a regular neural network require
a large number of parameters which is impractical for images with large spatial resolution.
Convolution layer reduces the number of parameters used for mapping by operating only in
the local regions. The spatial range of the local region onwhich the filter operates is governed
by a hyper-parameter called receptive field or filter size (F ). The filter scans through the
local regions of the input volume and it is extended across the input volume. Parameter
sharing is another important concept in the context of convolution layer operation. It is
based on the assumption that a filter used in one local region can be reused in other local
regions of the input feature volume directly instead of learning it for every occurrence of the
feature. This helps in greatly reducing the number of parameters involved for a convolution
layer by a huge margin. Figure 1.2 shows the advantage of filters convolving over a local
region in a convolution layer.

The dimensions of the output feature volume obtained after a single pass of convolution
layer on an input feature volume are governed by three hyper-parameters viz. depth (K),
stride (S) and zero-padding (P ).

• Depth (K) hyper-parameter is the number of filters used in a convolution layer and it

4



Chapter 1 Introduction

does not affect the spatial size of the output feature volume.

• Stride (S) hyper-parameter is the number of unit steps by which the filter is slided
on an input feature volume both horizontally and vertically. This hyper-parameter
reduces the final spatial size of the output feature volume.

• Zero-padding (P ) hyper-parameter is the number of zeros that is padded to an input
feature volume. Zero-padding is generally done before the convolution operation to
maintain the same output spatial size as that of input feature volume. Depending on
the amount of zero-padding used, the final spatial size of the output feature volume
changes accordingly.

The equations for calculating the dimensions of output feature volume of sizeW1xH1xD1

after applying a convolution layer on an input feature volume of size W0xH0xD0 with the
above hyper-parameters is given in the equation 1.1.

W1 = (W0−F + 2P )/S + 1 (1.1a)

H1 = (H0−F + 2P )/S + 1 (1.1b)

D1 = K (1.1c)

1.3.2 Pooling Layer

Pooling layer in a CNN architecture is placed after convolution layers to reduce the spatial
size of the input feature volume. Pooling layer summarizes the information present in a
bigger input feature volume to a smaller output feature volume. By reducing the spatial size
of the input feature volume, the parameters involved are also reduced which helps control
overfitting in CNN and improve performance. Pooling helps to elucidate the information
generated by a preceding convolution layer producing a compressed feature map. There are
variants of pooling function used in a pooling layer viz. max-pooling, average-pooling etc.

Max-Pooling is one of the commonly used pooling technique in CNN. It operates by
taking the maximum of the values present in a local region as the final value in the output
feature volume. In pooling operation, the depth of the output feature volume is same as
that of input feature volume. In average pooling, the average of all the values present in
the local region is taken as the final value in output feature volume. In recent CNN based
architectures, max-pooling is generally favored over other types of pooling operation as it
has been found to give better results practically. Pooling operation only reduces the spatial

5



Chapter 1 Introduction

Figure 1.3: Pooling layer downsamples the volume spatially, independently in each depth
slice of the input volume. Left: In this example, the input volume of size [240x320x64]
is pooled with filter size 2, stride 2 into output volume of size [120x160x64]. Notice that
the volume depth is preserved. Right: The most common downsampling operation is max,
giving rise tomax pooling, here shown with a stride of 2. That is, each max is taken over 4
numbers (little 2x2 square).

size of the input feature volume and it does not involve any parameters. Figure 1.3 shows
an example of pooling operation. The mathematical form of output feature volume of size
W1xH1xD1 after applying a pooling layer on an input feature volume of sizeW0xH0xD0 is
given in the equation 1.2.

W1 = (W0−F )/S + 1 (1.2a)

H1 = (H0−F )/S + 1 (1.2b)

D1 = D0 (1.2c)

Max-pooling layer, in general, carries forward the features present in input feature
volume to the next layer in CNN. It incorporates translation invariance by producing similar
output as that of a convolution layer. For example, a number present in different spatial
locations in two images are max-pooled to same output feature volume which is then
correctly classified by a classifier. This reduces the computation time during training
as parameters are reduced and generalizes the CNN architecture thereby achieving faster
convergence rate.

6



Chapter 1 Introduction

1.3.3 Fully Connected Layer

A fully connected layer is equivalent to a regular neural network where a neuron in one layer
is connected to all the neurons in the next layer. This introduces a large number of parameters
for each fully connected layer due towhich the training becomes slower. The fully-connected
layer contributes the majority to the number of parameters of an architecture. In recent CNN
architectures, fully connected layers are generally replaced by equivalent convolution layers
which speed up the training in practical situations. Convolution layer when used in place of
a fully-connected layer, reduces the number of parameters and these parameters are shared
across the input feature volume for a filter. There is a problem with the fully-connected layer
where it constrains the CNN architecture to accept only fixed size inputs. In convolution
layer, only filters are learned for feature identification, unlike regular neural network where
the entire mapping from one layer to the next layer is learned. In practice, the output feature
volume obtained from CNN layers is squashed to a single dimension vector of features
before forwarding to a fully connected layer(s) and output is produced as per computer vision
problems which can be either classification or regression. Since the fully-connected layer
is controlled by a number of neurons present in it, it is parametric in nature having a single
dimension.

The layers explained above forms the basis of a convolutional neural network
architecture. Different type of layers are usually stacked together in any order,
but in general, for various computer vision tasks, the sequence of layers should be
convolution→pooling→fully-connected .

1.3.4 Activation Layer

An activation layer is an essential component of CNN architecture. It is required to
incorporate nonlinearity in the CNN architecture by using an element-wise non-linear
function on the input feature volume. It helps in modeling complex nonlinear functions
in the CNN architecture. A node in CNN is activated only when the weighted sum
of input information is greater than a threshold value. In general, activation function
decides on whether a particular input data should be forwarded to the next layer or not.
There are different types of activation functions used in CNN such as sigmoid, tanh,
ReLU, LeakyReLU, ELU, etc. These activation functions have its own advantages and
disadvantages and are explained below.

sigmoid

The sigmoid function is heavily used activation function in a neural network and earlier
deep learning architectures. It implements nonlinearity by using the function given in the
equation 1.3.4. The sigmoid activation curve is shown in Figure 1.3.4(a).

7



Chapter 1 Introduction

sigmoid(x) =
1

1 + e−x
(1.3)

The sigmoid function takes in a real-valued number and squashes the number in the range
between 0 and 1. The sigmoid curve has a constant slope for extreme positive or negative
numbers as it is evident from Figure 1.3.4(a). Sigmoid function suffers from vanishing (or
exploding) gradient problem which can slow down the training process and hence it is not
preferable in practical situations. Vanishing or exploding gradient occurs when a sigmoid
function has a constant slope at extreme ends of the sigmoid curve. This makes the gradients
calculated on these ends during backpropagation to have either very high or very low values.
If the gradient is too high, then it will blow the gradient updates causing the network to
overshoot the minimum and become unstable. If it is too low, there will be minimal or no
change at all in parameters during gradient updates. Then, the network saturates and does not
learn anything at all or in plain terms, the neuron dies. The activations produced by sigmoid
functions are not centered around the mean. This leads to slow convergence of the network
as the gradients required for updating the parameters of the network are biased completely
in either positive or negative direction. This induces a zig-zag behavior when parameters are
updated. Another disadvantage of using sigmoid function is the computation of exponential
function for each element in the feature volume which is computationally expensive.

tanh

The tanh function is another non-linear activation function and limits the input feature values
in the range −1 to 1. Compared to the sigmoid activation function, the activations of tanh
function are zero-centered. It also suffers from vanishing (or exploding) gradient problem
due to which the convergence of the network is slow and performs poorly in practice. The
mathematical form of tanh activation function is shown in equation 1.4 and the curve are
shown in Figure 1.3.4(b)

tanh(x) =
1− e−2x

1 + e−2x
(1.4)

relu

Rectified Linear Unit also popularly called ReLU is the recent widely used activation
function in deep neural network architectures. The mathematical form and the curve are
shown in equation 1.5 and Figure 1.3.4(c) respectively.

8



Chapter 1 Introduction

(a) sigmoid (b) tanh (c) ReLU

Figure 1.4: Activation Functions

f(x) = max(0, x) (1.5)

ReLU activation function has many advantages over sigmoid and tanh activation
functions. It does not suffer from vanishing (or exploding) gradient problem as observed
in sigmoid and tanh. Hence, in ReLU backpropagation occurs smoothly which results in
efficient training. Since the mathematical form of ReLU has only comparison operation,
it is much computationally inexpensive than exponential operation present in both sigmoid
and tanh activation functions. The feature volume obtained after applying ReLU activation
function has sparse representations which are desirable compared to dense representations
as it reduces the number of parameters involved.

But, there are disadvantages with ReLU activation function. First, it is not bounded at
the top resulting in much higher values for the feature volume which can overwhelm the
architecture. Second, the capacity of the network is reduced as some of the neurons make
transition to a dead state for all the inputs. This problem is also known as dying ReLU
problem. To remedy this problem, some variations are applied to existing ReLU activation
function which results in small negative slopes for values less than 0. These modified ReLU
activation functions are Leaky ReLU, Parametric ReLU, etc. discussed in Xu et al. [3].

1.3.5 Regularization Layer

CNN architectures are often deep and complex which involves a huge number of parameters
(in millions). If the architecture is trained for low size dataset, then overfitting occurs
resulting in the poor generalization of the architecture to unseen data. In overfitting, the
architecture memorizes the training data and a large number of parameters increases the
complexity of the architecture. Regularization layer is an important part of CNN architecture
to prevent overfitting of the network. The solution to avoid overfitting is to suppress some
parameters of the network which maps the complex function. It is done usually by adding
an extra regularization function to the existing objective function of the network. The
addition of regularization function propels the network to choose simple representations

9



Chapter 1 Introduction

instead of complex representations and helps optimization methods to perform better when
the objective function is not convex. Regularization functions which are widely used in the
CNN architecture are explained in this subsection.

L2-regularization

L2-regularization function along with L1-regularization are the fundamental regularization
functions used in deep neural network architectures. It simply adds a regularization term to
the objective function of the model as given in the equation 1.6.

C = C0 +
λ

2n

∑
w

w2 (1.6)

Here, C0 is the existing objective function of the network and the regularization term
consists of the squared summation of parameters of the network. A hyper-parameter called
regularization parameter is used with the regularization term to control the amount of
regularization that is applied to the network. L2-regularization helps to avoid the overfitting
of the network to training data by favoring smaller values of the parameters.

Dropout

Dropout [4] is another regularization method added to the parametric layers to prevent
overfitting. Dropout is generally incorporated between fully-connected layers which
contributes the maximum to the number of parameters of the network. In Dropout during
training, a random subset of neurons and its connections to the next layer are dropped
and training is done on the remaining neurons of the layers as shown in Figure 1.5. It
allows the layers to incorporate robustness in feature identification instead of memorizing it
thereby reducing overfitting. In each training iteration when Dropout is used, less number
of parameters are tuned compared to a large number of parameters originally present in the
network. This way the network does not overfit and learns a structure present in the input
feature volume. Dropout can be alternatively thought of as an ensemble of multiple networks
with random neurons and their connections to the next layer being dropped. During the
testing phase, all the neurons in the network are used for prediction.

1.3.6 Batch-Normalization

Recently since the inception of ResNet [5], the depth of the CNN architecture has increased
tremendously. ResNet incorporated batch-normalization [6] as a regularization layer which
gives superior results than Dropout and can be used to reduce overfitting. For a batch of input
data, batch-normalization layer changes its mean and variance to be zero and one respectively
before forwarding to the next layer. If batch-normalization is not used, then with each layer
the features computed are not zero-centered for which the parametric layers take considerable

10



Chapter 1 Introduction

Figure 1.5: Dropout example. Left: Neural network without dropout. Right: Neural
network with randomly dropped links between neurons of successive layers.

time to learn these features. This occurs because each layer has to adapt itself to learn features
of different distribution and it mostly affects the performance in deeper architectures. With
batch-normalization, layers in a CNN architecture can learn the distribution faster because
the inputs for each of the layers will have the same distribution. Batch-normalization also
speeds up the training and it is practically faster than networks which have Dropout as
regularization function.

Generally, for data in each layer which are not zero-centered, the learning rate for gradient
descent step during training must be small. It is desirable because each layer has to respond
to data with a different distribution, so if higher learning rate is used, then the parameters of
the network oscillate around the minimum of the objective function. Batch-normalization
allows the model to use higher learning rates as data going into all the layers are always
zero-centered. The distribution learned by batch-normalization layer can be better than the
distribution with zero mean and unit variance. Batch-normalization gives better and faster
convergence in training requiring fewer iterations than Dropout and is generally preferred in
recent CNN architectures.

1.4 Thesis Organization

The following paragraphs outline the thesis layout with an emphasis on the contributions.

Chapter 1: Introduction This chapter introduces depth estimation from a single image as
a computer vision problem. Deep learning methods are compared with traditional machine
learning and feature engineering approaches are compared. Most of the works on computer
vision employ Convolutional Neural Network (CNN) and a background information onCNN
components are discussed in this chapter.

11



Chapter 2: Literature Survey This chapter discusses works that have been done in the
field of depth estimation involving a single image. It discusses different deep learning
methods like CNN and probabilistic graphical models used for estimating depth. Some of
the existing works perform depth estimation and semantic segmentation jointly as there is a
high correlation between these two tasks.

Chapter 3: Overview of CNN Architectures This chapter compares some of the
CNN architectures that have been successful over the years in popular ImageNet [7]
challenges. Different settings of filters and pooling operations for these CNN architectures
with individual advantages and disadvantages are mentioned in this chapter.

Chapter 4: Depth Estimation using Fully Convolutional Architecture This chapter
introduces the proposed network that has been used to perform depth estimation and the
results obtained in different parameter settings. The proposed network consists of pre-trained
DenseNet [8] with an added network of deconvolution blocks for gradually increasing
the spatial resolution of the final depth estimate. The arrangement of layers present in
a deconvolution block along with advantages with DenseNet is also discussed. The loss
function required for optimization of the network parameters are mentioned along with their
mathematical interpretations.

NYUDepth V2 [9] is discussed in details and preprocessing required for the images to be
used as input for the proposed network. Different types of data augmentations performed on
the dataset are mentioned. An evaluation of the results obtained after training is discussed in
detail along with training loss curve. Finally, a table of standard dataset metrics is presented
for comparison with existing methods for depth estimation.

Chapter 5: Conclusion This final chapter provides concluding remarks on the depth
estimation performed by the proposed network and also provides pointers for further
improvements. Possible extension of the depth estimation task to SLAM based applications
involving obstacle detection, 3D scene reconstruction are also mentioned in this chapter.



Chapter 2

Literature Survey

This chapter discusses research that has been made in the field of vision-based depth
estimation using both monocular and stereo approaches. The stereo based methods deploy
a pair of cameras along one common plane and apply the triangulation geometry to obtain
the depth using various cues such as, stereopsis, disparity, eye-convergence, and so forth.
However, depth estimation from monocular images possesses many challenges owing to its
ill-posed behavior in the absence of local and global information.

Preliminary work on monocular depth estimation usually applies various
hand-engineered features [10], where coarse geometric characteristics of a scene are
learned by drawing various assumptions about the 3D plane. The hand-engineered features
considered here can be any combination of colour, texture, location, shape or 3D geometry.
In this approach, the pixels in an image are combined together to form superpixels and each
of these superpixels is mapped to a label which can be any one of three geometric classes
viz. ground plane, the surface above the ground or the sky. The image is segmented into
multiple homogeneous regions which are geometric in nature and a model then tries to
maximize the likelihood of homogeneity of a region. For a region to be homogeneous, all
the superpixels belonging to this region must have same label.

Saxena et al. [11] used the Markov random field (MRF) to extract both local and global
features from monocular RGB images to build a system called “Make3D” [12] for depth
prediction. They have prepared their own dataset using a 3D laser scanner which outputs
depth images. The input RGB image is segmented into small size patches and depth value is
estimated for that small patch. Two class of feature vectors are used - absolute and relative.
In the case of an absolute feature vector, patches are scaled at multiple resolutions to capture
global image properties which help to estimate absolute depth. Relative feature vector uses
the relationship between two adjoining patches to compute the relative depth for a patch.
The strong correlation between adjacent patches impacts the depth of individual patches.
Both absolute and relative feature vectors are modeled in the MRF which optimizes the
distribution of depth values with respect to feature vector considered.

Instead of directly estimating the depth, Liu et al. [13] utilized the semantic labels of an
image to construct the 3D geometry of the scene. They proposed two different approaches

13



Literature Survey

using MRF to perform semantic segmentation based on pixels and super-pixels. These two
approaches use apriori estimated depth values and semantic labels. The apriori estimated
values represent the relationship between pixels or superpixels.

Ladicky et al. [14] predicted the likelihood depth value for a pixel by performing both
semantic segmentation and depth estimation using a classification based approach. Depth
estimation using a classifier is computationally efficient compared to depth estimation using
a pixel-wise regressor. The same approach can be applied to obtain semantic information
for a given scene.

Karsch et al. [15] in their approach, uses a matching technique on a predefined dataset
containing RGBD images to extract a set of similar, look-alike images to that of the input
image. These matching candidate images and their depth maps are warped with SIFT
Flow [16] so that the resultant warped images matches the structure of the input RGB image.
The warped image and depth pairs are then applied global depth optimization method to
produce an approximate depth map. The model also gives good results in the case of a video
where information obtained over the time is passed to the global depth optimization method
to produce a per-frame depth map. It is based on the key idea that depth distributions of
semantically similar scenes are also similar.

Konrad et al. [17] uses the input RGB image to find a set of nearest images and depth
pairs from a dictionary of image and depth pairs. The depth maps from these nearest
images are then fused together to form a final depth map which is later smoothened by using
cross-bilateral filtering which removes invalid variations that may arise in the fused depth
map. For the smoothened depth map, the RGB image is generated which along with the
fused depth map forms the 3D image.

Liu et al. [18] used the Conditional Random Field (CRF) to realize depth estimation as an
optimization problem with discrete and continuous potential variables with the assumption
that the pixels having similar RGB properties possess similar depth values. The continuous
potential variables map the relationship between a superpixel and its corresponding depth
value. The discrete potential variables are required for mapping the complex correspondence
between the neighboring superpixels. These two variables are modeled in CRF and depth is
inferred from a single RGB image by applying particle belief propagation.

Recent advances in deep learning have led to the usage of various CNN architectures
for depth estimation from single images. The deep CNN architectures usually follow
the principle of transfer learning; a pre-trained CNN model, on a large dataset such as
ImageNet [7], is used as a good initialization of weights upon which the domain specific
dataset is trained to fine-tune the model in regard to the desired application.

Eigen et al. [19] used a two-stage architecture of different scales for depth estimation;
in the first stage, a CNN model is applied to the input RGB image to extract coarse depth
map. In the second stage, the coarse depth map is fed to the second network of CNN along
with the input RGB image to produce a much refined depth map. The first coarse network

14



Literature Survey

is employed to get a global overview of the objects present in the scene. This network
consists of multiple convolution layers and the last few layers are fully-connected layers.
Thus, the coarse network is not fully-convolutional and the presence of full-connected layers
makes the entire image to be present in their view range. The second fine network which is
fully-convolutional uses the output obtained in the coarse network to produce finer details
of the depth map. This is done by using the localized object details present in an input RGB
image to orient with the global structure obtained in the first stage of the network.

This work is further extended [20] to develop a three-stage CNN architecture where the
first stage is pre-trained on either AlexNet [21] or VGGNet [22] to produce coarse details
from the input RGB image which is refined further in later stages of the architecture. Apart
from estimating depth, the same architecture is also being used to estimate surface normals
and semantic labels. The output type is decided by the number of channels that are desired
in the output image which is one in the case of the depth map. The first stage consists of
state-of-the-art architectures which are popular in giving better performance in ImageNet [7]
competitions. These architectures are fully adept in extracting features present in the input
image and requires neither superpixels nor segmented patches of the input image.

Roy et al. [23] proposed a neural regression forest that employs both CNN and an
ensemble of regression trees to produce continuous depth maps. Any pixel location from
input RGB image is passed to the regression tree, where a CNN is employed in each of the
nodes of the tree. The output from a CNN at a node can flow to either left or right subtree
which is decided by Bernoulli probability. The output depth for an input pixel is estimated
by combining the weighted path probabilities of the depth estimations made in each of the
paths from the root to the leaf. This remodels the pixel-wise regression problem to a binary
problem as each of the pixel values can move forward in either left or right subtree. Due to
the association of CNN with each node in a tree, the output depth estimation for a path from
the root to leaf resembles the computations being performed in a deep CNN.

Liu et al. [24] combined CNNs with probabilistic graphical models and a CRF loss layer
to improve the quality of predicted depth images. The input RGB image is segregated
into multiple superpixels and each one of these superpixels is fed to a network of only
convolution layers in the case of unary potentials. For pairwise potentials, a set of similarities
are considered for a pair of localized superpixels and it is fed to a network of fully-connected
layers. The output obtained for both unary and pairwise part are passed to a CRF loss layer
which optimizes negative log-likelihood to infer depth map.

Wang et al. [25] employed a joint CNN with hierarchical CRF layers to perform both
semantic segmentation and depth prediction on input RGB images. The input image
is first fed to a pre-trained CNN for jointly estimating depth map and semantic labels.
They emphasized that as the depth map and semantic information of a scene have a
strong association, allowing interactions between them improves the predicted depth values
compared to CNN exclusively used for depth prediction. The depth map is fine-tuned further

15



by forwarding region-wise and pixel-wise potentials of an input image segment to a two-layer
hierarchical CRF layer. Depth map and semantic information of an image are generated by
performing inference through the hierarchical CRF layers.

Chakrabarti et al. [26] used a network of convolutional layers to produce distributions
of depth derivatives having a different order, scale and orientation. This outputs several
distributions for each position on the input image. These distributions are passed to a global
optimization process which outputs uniform depth image that harmonizes with a group of
local distributions.

Laina et al. [27] used berHu [28, 29] loss function to train a deeper CNN architecture
combined with different sets of up-convolution and up-projection blocks to perform depth
estimation. They used a variant of ResNet [5] which contains 50 parametric layers and the
final network is devoid of any fully-connected layers. The up-projection blocks consists
of multiple filters of different sizes and the output of these filters are interleaved together
to produce the final feature map. Using filters in this way avoids zero multiplications that
may arise if interleaving is not performed. This allows high-level features to be forwarded
efficiently in the network. Their network when trained with berHu [28, 29] gives better
qualitative output compared to L2 loss.

The hand-crafted methods are either parametric or scene-constrained, and hence
cannot be deployed across varying environments. The CNN based models, on the other
hand, obviously produce comparatively better result, however, still needs either multi-tier
architecture or other means of post-processing to further fine-tune the result. The present
work alleviates the above issue by presenting a fully convolutional deep architecture for
improved depth estimation; a CNN model is chosen that can maximize the information
flow along the deeper network withou any means of degradation issues. Additionally, an
up-sampling strategy is proposed to improve the spatial resolution of the depth map so as to
precisely recognize various objects present at discrete depth levels.



Chapter 3

Architectural Overview of Convolution
Neural Networks

Convolution Neural Network revolutionized the pattern recognition approach applied on
images by working on the raw pixels without requiring any hand-engineered features. It
is designed to work on image volumes of different spatial sizes. It consists of various
layers like convolution, pooling, activation, etc. Currently, many other types of layers like
BatchNormalization [6], Dropout [4] are used for regularizing the parameters of convolution
neural network. Different architectures based on these layers have successfully performed
many computer vision tasks like object recognition, object localization, digit classification,
etc. by beating the hand-engineered features used in pre-deep learning era by a huge margin.
This chapter discusses some of the popular CNN architectures which won competitions on
the widely popular ImageNet [7] dataset and explains key features present in it.

3.1 LeNet

One of the earliest introduction of deep learning was in 1998 when LeNet architecture was
introduced for recognizing handwritten characters present in a document. This was published
at a time when SVM and kernel learning were quite popular. The hand-engineered features
(e.g. SIFT [30], HOG [31]) were dominant at that time for pattern recognition tasks. This
architecture is trained onMNIST dataset which consists of 60000 training samples and 10000
test samples each of them being in grayscale with a spatial resolution of 28x28. The LeNet
architecture is shown in Figure 3.1.

LeNet architecture consists of convolution, max-pooling and fully-connected layers as
shown in Figure 3.1. The activation function used is either sigmoid or tanh for non-linearity
in the model. Convolution layer at the shallower part of the architecture is used to extract
features from the input volumewhich is followed by alternating sub-sampling layer to reduce
the spatial resolution of the input volume. The final feature map from the sub-sampling layer
is fed to regular fully-connected layer for classification of the digit present in the input image.

17



Chapter 3 Architectural Overview of Convolution Neural Networks ✂✁☎✄✝✆✟✞✠✄☛✡✌☞✎✍✟✏✒✑✓✏✂✏✂✏✎✔✖✕☛✄☎✗☛✏✙✘✛✚✙✏✂✁✢✜✤✣✥✣✧✦  

INPUT
32x32

Convolutions SubsamplingConvolutions

C1: feature maps 
6@28x28

Subsampling

S2: f. maps
6@14x14

S4: f. maps 16@5x5

C5: layer
120

C3: f. maps 16@10x10

F6: layer
 84

Full connection

Full connection

Gaussian connections

OUTPUT
 10

✁❼✿▲❍✪❦✪❾★❦➝❱❜✸✶❆✶✯✪✿ ✵✶✰❅❆2✵✻✳✪✸✶✰❷✷✴⑥✦:❩✰❺❤❀✰2✵✻❑✂✁★❚♦✱✎❻✇✷✹❈❯▼❯✷✹❴▲✳★✵✶✿▲✷✹❈✪✱✴❴✦❤❳✰❅✳✪✸✶✱✴❴☛❤❳✰2✵●✽❢✷✹✸✻❣✑❚★✯✪✰❅✸✶✰❜⑥✙✷✹✸❢❉✪✿▲❍✹✿ ✵✻✺✏✸✶✰❅❆❅✷✹❍✹❈✪✿ ✵✶✿▲✷✹❈➎❦✥❧✈✱✴❆❖✯✞❃★❴➂✱✴❈✪✰❨✿▲✺✏✱➜⑥✙✰❇✱❘✵✶✳★✸✶✰❷❋✛✱✴❃❩❚✄✿✁❦ ✰✹❦✪✱➜✺✶✰2✵✏✷✴⑥❼✳✪❈✪✿ ✵✻✺✽❳✯★✷✹✺✶✰❨✽❢✰❅✿▲❍✹✯❯✵✶✺❜✱✴✸✶✰❨❆❅✷✹❈✪✺ ✵✶✸✶✱✴✿▲❈✪✰❅❉✞✵✶✷✎◗✑✰❷✿▲❉★✰❇❈❯✵✻✿▲❆❺✱✴❴✁❦

 ➈"➞$✧&✙(✶*+(✖ ➄$✧.✙/✥(➽2➓ ➄4☎"✒7➑9➷$✥&✙(✶4☎/✧(✖;✐7➀>➈.✎"✌A➀ ✪✘❛(➊/❞E✫G✛&✙(➓$✧/❿ ➄7➀9☎ ✑✡✙A➑(
i❶>➇(✱✯➵i➊7➑(✖9✐$✒ ➄9☎L➒✡✙7✓ ➈"✌i➊>➈9✐$✧/✥>➈A❦$✥&✙(➓(❯➘✟(✒i❶$➞>➄*➵$✧&✙(✶"✧7✠✂➈2➻>➈7✓L❖9☎>➈9✦✝A➀7➑9✙(❞ ➄/✥7➩$❅✘❛E➃➏⑥*❦$✥&✙(➉i❶>➇(✱✯➵i➊7➑(✖9✐$➔7➀"♣"✤2➓ ➄A➀A✶➌✙$✧&☎(➊9✺$✧&☎(➞.✙9✙7➑$➉>➈4◆(➊/❿ ✠$✥(✖"7➀9✺ ➵➍✐.☎ ❛"✤7✙✝⑥A➑7➀9✙(✖ ➈/✛2❭>✂L✂(➎➌☎ ➄9✎L✶$✥&✙(➞"✧.❼✡✦✝➠"✧ ➈2❭4☎A➑7➀9❼✂➓A✓ ✪✘➈(➊/✛2➻(➊/✥(➊A✠✘
✡✙A➀.✙/❿"➻$✧&✙(❖7➑9✙4☎.✂$✖E ➏⑥*➳$✥&✙(↕i❶>➇(✱✯➵i➊7➑(✖9✐$✶7➀"➽A➀ ➈/❺✂❛(✑➌✇"✧.❼✡✦✝➠"✥ ➄2➻4✙A➀7➑9❼✂.✙9✙7➑$✥"④i➊ ➈9✆✡✎(✒"✧(➊(✖9✫ ➈"❨4◆(➊/✧*+>➈/✥2➻7➑9❼✂➽ ☛✤9✙>❛7➀"❺✘✿c✞✍ ✌➻>❛/➉ ▲☛✤9✙>❛7➀"❺✘
✕➉d④✧✟✌➳*+.☎9✗i↔$✥7➑>❛9➻L✙(➊4◆(➊9☎L✂7➀9❼✂➤>➈9❙$✧&☎(❨;h ➈A➑.☎(➵>➈*☎$✥&✙(✔✡✙7➀ ❛"➊E❣j➇.✗i✒i❶(❞"❅✝"✧7➑;❛(❙A✓ ✪✘➈(✖/✥"♣>➄*✔i❶>➈9➇;❛>➈A➀.✂$✧7➀>➈9☎"➳ ➄9✎L❺"✧.❼✡✦✝➠"✧ ➈2➻4✙A➑7➀9❼✂✺ ➄/✥(✒$❅✘➇4✙7✁i➊ ➈A➑A✠✘ ➄A➑$✧(✖/✧9✎ ✠$✧(❞L❢➌☎/✥(✖"✧.✙A➑$✧7➀9❼✂➽7➀9❖ ✏☛❺✡✙7➟✝⑥4☛✘➇/✥ ➈2❭7✓L ✌❇✰✇ ✠$♣(✖ ✑i❿&✫A✓ ✪✘➈(✖/✒➌✙$✧&✙(9➇.✙2➉✡◆(➊/➳>➄*❣*+(❞ ✠$✥.✙/✧(❙2➓ ➄4☎"➉7➀"♣7➑9✥i❶/✥(✖ ➈"✧(✖L✫ ❛"➔$✥&✙(❙"✧4☎ ➄$✧7✓ ➄A❯/✧(❞"✤>❛A➑.✦✝$✧7➀>➈9❭7✓"❯L✙(✒i❶/✥(✖ ❛"✤(❞L☛E ✭✇ ✑i❿&➞.☎9✙7➩$❣7➀9✒$✥&✙(➵$✧&✙7➀/❿L✒&✙7✓L✙L✂(✖9❙A✓ ✪✘➈(✖/❇7➀9➑➞✗✂❄✝.✙/✥(✄✑➵2➓ ✪✘➉&☎ h;❛(❣7➑9☎4✙.✂$❜i➊>➈9✙9☎(✒i↔$✥7➑>❛9☎"✟*+/✥>➈2 "✤(✖;➈(✖/✥ ➈Ah*+(✖ ✠$✥.✙/✥(➏2➓ ➄4☎"7➀9✢$✥&✙(✌4✙/✥(➊;➇7➀>➈.☎"✛A✓ ✪✘➈(✖/✖E❦G✛&✙(➓i❶>❛9➇;➈>➈A➀.✂$✥7➑>❛9☎✄✠"✧.❼✡✦✝➠"✧ ➈2➻4✙A➑7➀9❼✂➚i❶>➈2➚✝
✡✙7➀9☎ ✠$✥7➑>❛9✏➌☛7➀9☎"✤4☎7➑/✥(✖L✆✡☛✘✫q➔.✗✡✎(✖A➏ ➄9☎L ✎ 7➑(❞"✤(✖A✡❁ "➉9☎>➄$✧7➀>➈9✎"➉>➈* ☛✧"✧7➑2➚✝4✙A➀(✖✌➤ ➄9✎L ☛❘i❶>❛2❭4☎A➑(✄↔✔✌✞i❶(✖A➑A✓"✒➌➄r➵ ❛"❦7➑2➻4✙A➀(➊2➻(✖9❛$✥(✖L❭7➀9➚✜☎.✙s➇.☎"✤&☎7➑2➓ ❂❁ "d➔(✖>✦i❶>✑✂❛9✙7➑$✧/✥>➈9 ✞ ❜ ✑✆✠❖➌✎$✧&✙>❛.❼✂➈&✫9✙>➙✂➈A➀>✑✡☎ ➈A➑A✠✘✺"✤.✙4◆(➊/✥;➇7➀"✧(✖L✺A➀(✖ ➈/✧9☎7➑9❼✂4✙/✥>✦i❶(✖L✙.✙/✧(✌"✧.✗i❿&✺ ➈"✎✡☎ ✑i❿s❩✝⑥4✙/✥>➈4☎ ✑✂❛ ✠$✥7➑>❛9➓r➵ ❛"❨ h;✠ ➄7➀A➀ ✑✡✙A➑(♣$✧&☎(➊9✝E❹✕A✓ ➄/❘✂➈(✒L✂(✒✂➈/✥(➊(➞>➈*❫7➀9✐;✠ ➈/✧7✓ ➄9✗i➊(✌$✧>➙✂➈(✖>➈2➻(❶$✥/✧7✁i➤$✧/❿ ➄9✎"④*+>❛/✧2➓ ✠$✥7➑>❛9☎"❨>➈*$✧&☎(❭7➀9✙4✙.✙$✌i✖ ➄9➛✡✎(➓ ✑i❿&☎7➑(✖;➈(✖L➲r❨7➩$✥&❖$✥&✙7➀"➤4☎/✧>➎✂➈/✥(✖"✥"✤7➀;➈(➞/✥(✖L✙.✗i↔$✥7➑>❛9>➄*✝"✧4☎ ✠$✥7➀ ➈A✙/✥(✖"✧>➈A➀.✂$✧7➀>➈9➵i❶>❛2➻4✎(✖9☎"✧ ➄$✧(❞L➝✡❩✘❭ ✌4✙/✥>✑✂❛/✧(❞"✧"✧7➑;❛(❫7➀9✗i❶/✥(✖ ❛"✤(>➄*◆$✧&☎(➔/✧7✁i❿&✙9✙(❞"✧"❯>➈*✎$✥&✙(➔/✥(➊4✙/✥(✖"✧(➊9✐$✥ ➄$✧7➀>➈9➐➪➺$✧&☎(➔9➇.✙2➉✡◆(➊/➏>➈*✎*+(❞ ✠$✥.✙/✧(2➓ ➄4☎"✴➶↔Ej➇7➑9✥i❶(✌ ➄A➀A☎$✥&✙(➤r✇(✖7✙✂❛&✐$✥"➵ ➄/✥(➉A➀(✖ ➄/✥9✙(❞L➽r❨7➑$✧&➐✡☎ ✑i❿s❩✝⑥4✙/✧>❛4☎ ❄✂✐ ✠$✥7➑>❛9✏➌
i❶>❛9➇;➈>➈A➀.✂$✥7➑>❛9☎ ➄A✛9✙(➊$④r✇>❛/✧s✂"➝i➊ ➈9⑧✡◆(➲"✤(✖(➊9➘ ➈"➓"❺✘➇9❛$✥&✙(✖"✧7✠➽➊7➀9❼✂❖$✥&✙(➊7➀/>✠r❨9 *+(✖ ➄$✧.✙/✥(➓(❯↔➇$✧/❿ ✑i❶$✧>❛/✖E➽G✛&✙(✶r✇(✖7✙✂❛&❛$➞"✧&☎ ➄/✥7➀9❼✂✿$✧(✒i❿&☎9✙7✠➍✐.✙(✶&☎ ➈"$✧&☎(✢7➀9✐$✧(➊/✥(✖"✤$✧7➀9❼✂ "✤7✓L✂(✿(❯➘✟(✒i↔$➻>➄*➔/✥(✖L✙.✗i❶7➀9❼✂➲$✥&✙(✿9✐.☎2➉✡◆(➊/➻>➄*❨*+/✥(➊(4☎ ➈/✥ ➈2❭(➊$✧(✖/✥"✒➌✛$✧&✙(✖/✧(✒✡☛✘ /✥(✖L✙.✗i❶7➀9❼✂ $✥&✙( ☛❺i➊ ➈4☎ ✑i➊7➩$❅✘✔✌➷>➈*➞$✧&✙( 2➓ ♦✝
i❿&✙7➀9✙(➉ ➈9☎L➻/✧(❞L✂.✗i➊7➑9❼✂➤$✥&✙(✛✂✐ ➄4➝✡✎(➊$④r✇(✖(➊9➻$✥(✖"✤$❫(➊/✥/✧>❛/➏ ➄9☎L❭$✥/✥ ➈7➑9☎7➑9❼✂(➊/✥/✥>➈/ ✞ ❜✫❝✬✠⑥E➽G✛&✙(➓9✙(➊$④r✇>❛/✧s➲7➀9➒➞✗✂➈.☎/✧(❵✑✫i❶>❛9✐$✥ ➄7➀9☎"✹❜✫❝✗✘❼➌ ❀✻✘✗✺ i➊>➈9✦✝9✙(★i↔$✧7➀>➈9✎"✄➌♦✡✙.✙$❦>❛9✙A✠✘ ✓✗✘❼➌ ✘✻✘✗✘✛$✧/❿ ➄7➀9☎ ❄✡☎A➑(❫*+/✧(✖(❫4☎ ➈/✥ ➈2❭(➊$✧(✖/✥"❳✡✎(★i➊ ➈.☎"✤(>➄*❯$✧&☎(✌r✇(✖7✙✂❛&❛$➔"✧&☎ ➄/✥7➀9❼✂☎E
✜❇7✙↔✂(✖L☛✝➠"✧7✙➽✖(❭☞✇>❛9✐;❛>➈A➀.✂$✧7➀>➈9✎ ➄A❙d➉(❶$④r➵>➈/✥s✂"❖&☎ h;❛(➹✡◆(➊(✖9➶ ➄4☎4✙A➑7➀(✖L$✧> 2➓ ➈9❩✘❑ ➄4✙4✙A➀7✁i➊ ✠$✥7➑>❛9☎"✒➌➵ ➈2❭>❛9❼✂ >➄$✧&☎(➊/➽&☎ ➈9☎L✂r❨/✥7➩$✥7➑9✗✂ /✥(✒i➊>✑✂❛9✙7➟✝$✧7➀>➈9✩✞ ❜ ✙✆✠❖➌ ✞ ❜✗✓ ✠❖➌☛2➓ ✑i❿&✙7➀9✙(❯✝⑥4✙/✥7➑9✐$✥(✖L➔i❿&✎ ➄/❿ ✑i↔$✥(➊/♣/✧(★i❶>✑✂❛9✙7➑$✧7➀>➈9 ✞ ❜ ✔✆✠✶➌>➈9❼✝♠A➀7➑9☎(✾&☎ ➈9☎L✂r❨/✥7➩$✥7➑9✗✂➶/✥(✒i➊>✑✂➈9☎7➩$✥7➑>❛9 ✞ ❜✗✺ ✠❖➌➲ ➄9☎L✴*⑨ ✑i➊(✾/✥(✒i➊>✑✂❛9✙7➟✝$✧7➀>➈9 ✞ ❜✗❀ ✠⑥E ✜❇7✙↔✂(✖L☛✝➠"✧7✙➽✖(➹i❶>❛9✐;❛>➈A➀.✂$✧7➀>➈9✎ ➄A➞9✙(➊$④r✇>❛/✧s✂"✿$✥&☎ ✠$➷"✤&☎ ➈/✧(r➵(➊7✠✂➈&✐$✥"➻ ➄A➀>➈9✗✂  "✤7➀9❼✂❛A➑(✿$✧(✖2➻4✎>❛/✥ ➈A✛L✙7➑2➻(➊9✎"✤7➀>➈9➘ ➄/✥(✢s➇9✙>✠r❨9  ➈"G✛7➀2❭(✄✝❖✧♣(➊A✓ ✪✘♣d➉(➊.✙/❿ ➄A✐d➔(➊$④r✇>❛/✧s✂"❷➪⑨G✩✧➳d➉d♣"❘➶❶E❯G✩✧➳d➉d♣"❀&✎ h;➈(❷✡◆(➊(➊9.☎"✧(✖L❖7➑9➲4☎&✙>➈9✙(✖2➻(❙/✥(✒i➊>✑✂➈9☎7➩$✥7➑>❛9✢➪+r❨7➑$✧&✙>❛.✂$➤"✧.❼✡✦✝➠"✥ ➄2➻4✙A➀7➑9❼✂☛➶✜✞ ❝✗✘✬✠✶➌

✞ ❝✗➾✡✠❖➌➻"✤4◆>➈s❛(➊9�r➵>➈/❿L /✥(✒i❶>➎✂➈9✙7➑$✧7➀>➈9 ➪⑨r❨7➩$✥&✭"✧.❼✡✦✝➠"✥ ➄2➻4✙A➀7➑9❼✂☛➶ ✞ ❝✵✑ ✠✶➌
✞ ❝ ❜ ✠❖➌✌>➈9❼✝♠A➀7➑9☎( /✧(★i❶>✑✂❛9✙7➑$✧7➀>➈9 >➄*➻7➀"✧>➈A✓ ✠$✥(✖L❲&☎ ➈9☎L✂r❨/✥7➩$✧$✧(➊9②i❿&✎ ➄/❿ ✑i✹✝$✧(✖/✥"✹✞ ❝✫❝✫✠✶➌✙ ➈9☎L✺"✤7✠✂➈9✎ ✠$✧.☎/✧(➳;➈(✖/✧7✙➞✥i➊ ➄$✧7➀>➈9 ✞ ❝✦✙✆✠⑥E

✬ ✛❊✢ ➳❺➸➑➳❯➺❩✭✝✆
G✛&✙7➀"➉"✤(★i↔$✧7➀>➈9✫L✂(❞"❺i➊/✧7✠✡◆(✖"❨7➀9✺2❭>❛/✧(✌L✂(➊$✥ ➈7➑A❀$✧&✙(➞ ➈/❘i❿&✙7➑$✧(★i↔$✥.✙/✧(➤>➈*

✗✝(❞d➔(➊$❇✝ ✙✦➌❨$✥&✙(①☞✇>❛9➇;➈>➈A➀.✂$✥7➑>❛9☎ ➄A➳d➔(➊.☎/✥ ➈A♣d➔(➊$④r✇>❛/✧s➘.☎"✧(✖L✻7➑9✲$✧&✙((❯↔✂4◆(➊/✥7➑2➻(✖9❛$❿"➊E ✗❀(✖d➔(➊$❇✝ ✙➉i➊>➈2➻4✙/✥7➀"✧(✖" ✔➞A➀ ✪✘❛(➊/❿"✄➌✐9✙>➄$✩i❶>❛.✙9✐$✧7➀9❼✂❙$✧&✙(7➀9✙4✙.✂$★➌☎ ➄A➀A✟>➄*❀r❨&✙7✁i❿&➙i➊>➈9✐$✥ ➈7➑9✶$✧/❿ ➄7➀9☎ ❄✡☎A➑(➳4☎ ➄/❿ ➄2➻(➊$✧(➊/❿"✬➪⑨r✇(✖7✙✂❛&✐$✥"✴➶↔EG✛&✙(➏7➀9✙4✙.✙$❀7➀"❀ ❙❜ ✑✪↔ ❜✵✑❫4☎7➟↔✂(➊A➈7➑2➓ ❄✂❛(➈E❀G✛&☎7➀"❀7➀"✝"✧7✠✂➈9✙7✙➞✥i➊ ➈9✐$✧A✠✘➉A✓ ➄/❘✂➈(➊/$✧&✎ ➄9✺$✧&☎(➞A➀ ➈/❺✂❛(✖"✤$✬i❿&☎ ➄/❿ ✑i❶$✧(✖/❨7➑9✺$✥&✙(✒L✙ ➄$✥ ❄✡✎ ➈"✧(➣➪⑨ ✠$♣2❭>✐"④$✒✑❆✘♦↔✤✑✻✘4✙7✙↔✂(➊A✓"➓i❶(✖9❛$✥(➊/✥(✖L❺7➑9  ❈✑✻✺♦↔✤✑❆✺ ➞☎(➊A✓L✗➶❶E✶G✛&✙(➓/✥(✖ ➈"✧>➈9 7✓"➤$✧&☎ ➄$➞7➩$➞7✓"L✂(❞"✤7➀/✥ ✑✡✙A➀(✌$✧&☎ ➄$♣4◆>➄$✥(➊9✐$✧7✓ ➄A❦L✂7✓"④$✥7➑9✗i❶$✧7➀;➈(✒*+(✖ ✠$✥.✙/✥(✖"➉"✧.✗i❿&➲ ❛"♣"✤$✧/✥>➈s❛((➊9✎L☛✝♠4◆>➈7➀9✐$✥"➵>➈/✎i❶>❛/✧9✙(✖/✎i✖ ➄9✶ ➈4✙4◆(✖ ➄/❊✣●➨✆➺➭➥❼➳ ❄✴➳✄➨✗➺2➳❯➡❣>➈*✝$✧&☎(♣/✥(✒i➊(➊4✦✝$✧7➀;➈(✞➞☎(✖A➀L✿>➈*❀$✧&☎(✌&✙7✙✂❛&✙(✖"✤$❇✝⑥A➀(➊;➈(✖A◆*+(✖ ✠$✥.✙/✥(➤L✙(❶$✧(★i↔$✥>➈/❿"➊E❨➏➠9❖✗✝(❞d➔(❶$❺✝✝✙$✧&☎(♣"✧(❶$✇>➈*✏i❶(➊9✐$✥(➊/❿"➏>➄*☛$✥&✙(➉/✥(✒i➊(➊4✂$✥7➑;❛(✩➞☎(✖A➀L✙"✇>➄*✟$✥&✙(➉A✓ ➈"✤$✎i➊>➈9➇;➈>❛A➑.✦✝$✧7➀>➈9✎ ➄A✂A✓ ✪✘➈(➊/✛➪❖☞❀❜❼➌➈"✧(➊(✩✡◆(➊A➀>✠r✬➶❀*+>➈/✥2➶ ✹✑❆✘❄↔✤✑❆✘➳ ➄/✥(✖ ♣7➑9❭$✧&☎(✬i❶(✖9❛$✥(➊/>➄*❀$✧&✙(✹❜ ✑♦↔ ❜ ✑➤7➀9✙4✙.✂$❞E❫G✛&✙(➳;✠ ➄A➀.✙(✖"➵>➄*❇$✧&✙(➳7➀9✙4✙.✂$➔4✙7✙↔✂(➊A✓"✛ ➄/✥(➉9✙>❛/❇✝2➓ ➄A➀7✙➽✖(✖L❺"✤>✢$✧&☎ ➄$➤$✧&✙(➝✡☎ ➎i❿s❩✂❛/✧>❛.✙9☎L✫A➀(➊;❛(➊A✩➪+r❨&☎7➩$✥(★➶¢i❶>❛/✧/✥(✖"✧4◆>➈9☎L✙"$✧>✫ ✿;✠ ➄A➀.✙(➻>➄*➃✝ ✘☎E✙➾❭ ➄9☎L❖$✧&✙(➻*+>❛/✧(✒✂➈/✥>➈.✙9✎L✢➪➭✡✙A✓ ✑i❿s❼➶✞i❶>❛/✧/✥(✖"✧4◆>➈9☎L✙"$✧>①➾❛E✙➾✍✔✬✙✙E➻G✛&☎7➀"✌2➓ ➈s➈(✖"➳$✥&✙(➓2➻(✖ ➈9 7➀9✙4✙.✙$✒/✧>❛.❼✂➈&☎A✙✘✦✘✗➌❇ ➈9☎L❺$✧&✙(;✠ ➄/✥7➀ ➈9✗i❶(➳/✥>➈.❼✂❛&✙A✙✘➔➾➳r❨&☎7✠i❿&✺ ✑i✒i❶(➊A➀(➊/❿ ✠$✥(✖"➵A➀(✖ ➄/✥9✙7➀9❼✂❖✞ ❝ ✓ ✠⑥E
➏➠9➤$✧&✙(❫*+>➈A➀A➑>✠r❨7➀9❼✂✗➌✪i❶>❛9➇;➈>➈A➀.✂$✥7➑>❛9☎ ➄A✠A✓ ✪✘➈(✖/✥"✝ ➈/✧(❣A✓ ❄✡◆(➊A➀(✖L➉☞➜↔❢➌✠"✧.❼✡✦✝"✥ ➄2➻4✙A➀7➑9❼✂✢A➀ ✪✘❛(➊/❿"➉ ➈/✧(➞A✓ ❄✡◆(➊A➀(✖L j❩↔❢➌☛ ➄9☎L➲*+.✙A➑A✠✘❩✝❖i➊>➈9✙9☎(✒i↔$✥(✖L✫A✓ ✪✘➈(✖/✥" ➄/✥(➤A➀ ✑✡✎(✖A➑(❞L➙✜❳↔❢➌✙r❨&✙(✖/✧(✞↔✿7➀"➵$✥&✙(✌A➀ ✪✘❛(➊/✛7➀9☎L✂(❯↔☛E
✗❀ ✪✘➈(✖/➑☞④➾➽7✓"✒ ✆i❶>❛9➇;➈>➈A➀.✂$✥7➑>❛9☎ ➄A❣A✓ ✪✘➈(✖/➞r❨7➩$✥&✮✓✺*+(✖ ➄$✧.✙/✥(➓2➓ ➄4☎"✖E

✭❫ ➎i❿&➻.✙9✙7➑$➵7➀9➓(✖ ➎i❿&➻*+(✖ ✠$✥.✙/✥(➔2➓ ➄4➽7✓"➜i➊>➈9✙9✙(★i↔$✥(✖L➻$✥>✒ ✙✪↔✤✙➤9☎(➊7✠✂➈&✦✝
✡◆>➈/✥&✙>➇>➇L✒7➑9✒$✧&✙(✛7➀9✙4✙.✂$❞E❯G✛&☎(✛"✧7✠➽➊(❫>➈*☎$✥&✙(❫*+(❞ ✠$✥.✙/✧(➵2➓ ➄4☎"❯7✓" ✑❆✺♦↔✤✑✻✺r❨&✙7✁i❿&❖4✙/✥(➊;❛(➊9✐$✥"¢i➊>➈9✙9✙(★i↔$✥7➑>❛9➲*+/✥>➈2 $✧&☎(❭7➀9✙4✙.✙$✌*+/✧>❛2 *⑨ ➄A➀A➑7➀9❼✂✿>❄➘$✧&☎(➑✡◆>➈.✙9✎L✙ ➄/❘✘➈E➓☞④➾➑i➊>➈9✐$✥ ➈7➑9☎"➉➾ ✙✻✓➻$✧/❿ ➄7➀9☎ ❄✡☎A➑(❙4☎ ➄/❿ ➄2➻(❶$✥(➊/❿"✄➌◆ ➄9☎L
➾ ✑ ✑✦➌ ❜✻✘✫❝➑i❶>❛9✙9✙(★i↔$✧7➀>➈9✎"➊E
✗❀ ✪✘➈(✖/➔j ✑❭7➀"➉ ➓"✤.❼✡❼✝⑥"✥ ➄2➻4✙A➀7➑9✗✂❭A✓ ✪✘➈(✖/❨r❨7➩$✥& ✓❙*+(✖ ✠$✥.✙/✥(✌2➻ ➈4☎"❨>➈*"✧7✙➽✖(✞➾✖❝❄↔❢➾❪❝✎E★✭❫ ➎i❿&✒.✙9☎7➩$❣7➀9❭(❞ ✑i❿&✒*+(✖ ✠$✥.✙/✥(➵2➓ ➈4❙7✓"❷i❶>❛9✙9✙(✒i❶$✧(❞L➞$✥>➳ 

✑✪↔✤✑➤9☎(➊7✠✂➈&☛✡✎>❛/✧&☎>✐>✂L➻7➀9➓$✧&☎(④i❶>❛/✧/✥(✖"✧4◆>➈9☎L✂7➀9❼✂➤*+(❞ ✠$✧.☎/✧(♣2➻ ➈4➓7➑9✫☞④➾➈EG✛&✙(➳*+>➈.☎/❨7➑9✙4☎.✂$✥"✛$✥>➓ ✒.✙9☎7➩$➔7➀9➲j ✑✒ ➈/✧(✌ ❛L✙L✂(✖L✏➌➇$✧&✙(✖9✢2❙.✙A➩$✥7➑4☎A➑7➀(✖L
✡☛✘  ✫$✧/❿ ➄7➀9☎ ✑✡✙A➑(➐i❶>➇(❈✯➣i➊7➑(✖9❛$★➌➏ ➄9☎L❑ ➈L✙L✙(✖L➷$✥>  ➲$✧/❿ ➄7➀9☎ ❄✡✙A➀(➣✡✙7✓ ➈"✖EG✛&✙(➲/✥(✖"✧.✙A➑$➽7➀"✶4☎ ➈"✥"✧(✖L❑$✧&✙/✥>➈.✗✂➈&❍ "✤7✠✂➈2➻>❛7➀L✙ ➈A✛*+.✙9✗i❶$✧7➀>➈9✝E G✛&✙(
✑✪↔✤✑✶/✧(★i❶(✖4✂$✧7➀;➈(➑➞☎(➊A✓L✙"✌ ➈/✧(❙9✙>➈9✦✝⑥>✠;➈(✖/✧A✓ ➄4☎4✙7➑9✗✂✗➌✎$✧&✙(✖/✧(➊*+>➈/✥(✒*+(❞ ✠$✧.☎/✧(2➓ ➄4☎"✒7➑9❤j✤✑✺&☎ h;➈(➻&☎ ➈A➩*✛$✥&✙(✶9➇.✙2➑✡✎(✖/✒>➄*✛/✥>✠r➔"➞ ➄9☎L①i➊>➈A➀.✙2➻9  ➈"*+(✖ ➄$✧.✙/✥(➤2➓ ➄4☎"❨7➀9➔☞④➾➈E ✗❇ ✪✘➈(➊/❨j ✑❭&☎ ❛"¢➾ ✑✒$✧/❿ ➄7➀9☎ ✑✡✙A➑(➤4☎ ➈/✥ ➈2➻(❶$✧(✖/✥" ➄9✎L✳✙❼➌ ✺✗✺✻✘➚i❶>➈9☎9✙(✒i❶$✧7➀>➈9☎"✖E
✗❀ ✪✘➈(✖/✞☞❀❜➻7✓"♣ ➣i➊>➈9➇;➈>❛A➑.✙$✧7➀>➈9☎ ➈A☛A➀ ✪✘❛(➊/➔r❨7➑$✧&✢➾✒✓❭*+(✖ ➄$✧.✙/✥(➞2➓ ➄4☎"✖E

✭❫ ➎i❿&✺.✙9✙7➑$➉7➑9✫(❞ ✑i❿&✿*+(✖ ➄$✧.✙/✥(➞2➓ ➄4✺7✓"✬i➊>➈9✙9✙(★i↔$✥(✖L✢$✧>✶"✧(➊;❛(➊/❿ ➄A ✙♦↔ ✙9✙(✖7✙✂❛&❩✡◆>➈/✥&✙>➇>✂L✙"✺ ✠$✫7✓L✂(➊9✐$✧7✁i➊ ➈A➤A➑>✦i➊ ➄$✧7➀>➈9☎"✺7➀9  ❑"✧.❼✡☎"✧(❶$➲>➈*➻j ✑❂❁ "*+(✖ ➄$✧.✙/✥(✿2➻ ➈4☎"✖E❑G❯ ❄✡✙A➀(➙➏❭"✤&☎>✠r➔"✒$✥&✙(✫"✤(➊$❭>➈*➤j ✑➲*+(✖ ➄$✧.✙/✥(✿2➻ ➈4☎"

Figure 3.1: A forward pass in LeNet Architecture. Source: LeCun et al. [1].

  !"  !"# $$"$$"%&

 !" !"%&  !" !" $& '#"'#" $&

'#"'#"#()

'#"'#"#() '#"'#" $& &"&" $&

4096 4096 1000

INPUT IMAGE

*

%&+''+)+,

*

-+.+/+0

1

.+/

.*

-

1

#+ 

*

 $&+$+'+ 

1

#+ 

*

#()+#+'+'

*

#()+#+'+'

1

#+ 

*

 $&+#+'+'

.*

),%&

.*

),%&

.*

',,,

Max-Pooling, Size F, Stride S Convolution, # Filters N, Size F, Stride S, Padding P

Fully-Connected, # Neurons N

Figure 3.2: AlexNet Architecture, 2012 trained on ImageNet dataset.

3.2 AlexNet

In 2012 ImageNet Large Scale Visual Recognition Competition (ILSVRC) which consists
of 1.2 million high-resolution images, AlexNet [21] architecture was the first deep
convolutional neural network to be used for such computer vision task compared to shallower
LeNet. AlexNet consists of 11 CNN layers of which 5 were convolution layers, 3

fully-connected layers and remaining were max-pooling layers. The architecture is trained
on ImageNet dataset and the spatial resolution of the input image to the CNN model needs
to be 227x227. AlexNet is a much deeper model compared to LeNet and it operated on a
large volume of data compared to LeNet which operated on only 60000 training images. The
architecture is shown in Figure 3.2.

It uses ReLU for non-linearity instead of either sigmoid or tanh as the latter activation
functions leads to saturating gradients. The activation curve for these functions becomes
constant for extremely low and high values of the input as seen in Figure 1.3.4 (a) and
(b). When gradient gets saturated, the training gets slower as the gradient gets diminished
while returning from the output layer to initial layers. This problem is popularly known
as vanishing (exploding) gradient problem. ReLU avoids this problem by introducing

18



Chapter 3 Architectural Overview of Convolution Neural Networks

  !"  ! ## "## $%"$%  &" & #!"#! '( '( '()*+,-./"

01#22201!23%01!23%

01$# 

01$# 

01 $%

01# &

01%!

4++56789 :/;<=

(+7>+5?-6+79 :/;<=

Figure 3.3: VGGNet Architecture, 2014 trained on ImageNet dataset.

non-saturating gradients leading to the faster training of the architecture. Originally, the
architecture is executed over 2 GPUs in parallel where one GPU runs the layer-parts on
the top part of the input volume and other GPU runs the layer-parts on the bottom. The
convolution operations are implemented in GPU which gives 50 times more speed than the
respective CPU implementation. A major addition to the architecture is the use of dropout
for regularization. Dropout is a technique where neuron and its parametric connections to
the next layer are randomly dropped. This results in different variants of the architecture
during each iteration and thus incorporates robustness to variations in the input data.

3.3 VGGNet

VGGNet [22] architecture introduced in 2014 came first and second in ImageNet localization
and classification task respectively. The main motive behind its inception is to explore the
effects of much deeper layers in an architecture. VGGNet has two architectural variants
consisting of 16 and 19 number of parametric layers which were deeper compared to prior
CNN architectures. To reduce the number of parameters in the architecture, the filter size
which was set to high (around 7x7) in previous architectures is reduced to smaller sizes
(3x3) in all the convolution layers. In this architecture, the convolution layers are stacked
on top of each other in increasing order of depth. The size of the volume of the feature map
is reduced by means of max-pooling which are present in between a group of convolution
layers. Zero-padding layers are used in this architecture to maintain the resolution of the
output volume same as that of input volume. Dropout, as seen in AlexNet, is also used in
this architecture for regularization. VGGNet-16 architecture is shown in Figure 3.3.

VGGNet emphasised that deeper architectures lead to better results. Compared to
AlexNet, VGGNet employed simpler configurations, for example, 3x3 filters instead of 7x7
filters. VGGNet also used ReLU as a choice of activation function for faster training. The
only drawback with VGGNet is the huge number of parameters present in the architecture
which is majorly due to fully-connected layers present in it.

19



Chapter 3 Architectural Overview of Convolution Neural Networks

3.4 ResNet

The fundamental problems with VGGNet are slower training and large architecture weights
(around 530MB).This can be attributed mainly due to the depth of the architecture and a
large number of neurons present in fully-connected layers. This resulted in longer training
time. ResNet [5] was proposed in 2015 where it beat all the state-of-the-art results across all
the domains in the ImageNet competition.

The maximum number of parametric layers present in a convolutional neural network
till ResNet was only 19 in one of the VGGNet variants. As network depth is very crucial
for good results in deep learning based computer vision tasks, it is difficult to train neural
networks that are much deeper than VGGNet. Apart from the difficulty in training, it also
results in poor performance. This mainly happens due to degradation problem. For example,
if we consider VGGNet-16 and copy over the layers to form an architecture with a number
of layers more than 16, the new architecture produces poor results than the VGGNet-16
architecture. This degradation problem states that when the network depth starts increasing,
the accuracy gets saturated and then degrades rapidly. The degradation problem, however,
is not caused by overfitting as it is expected, but mainly due to the failure of the layers deep
in the network to propagate the feature map produced by the previous layer.

ResNet addressed the degradation problem by using smaller micro-architecture modules
as building blocks to create deep residual learning framework. Compared to previous CNN
architectures which were sequential in terms of the layer connection, ResNet used small
residual modules to build a bigger network. The sole reason for going with residual modules
is to make the parametric layers fit a residual mapping rather than fit an underlying mapping
between layers as a whole. It is observed that for a deeper network it is easier to train the
residual mapping between parametric layers than the original mapping with no residuals.
This idea of residual mapping is done with the help of a shortcut connection to skip over
some of the parametric layers. The input feature map is added directly to the feature map
obtained after forwarding through a number of convolution layers (either 2 or 3) in a block
to produce output feature map as shown in Figure 3.4. For example, ifHl (.) is a composite
function consisting of weight layers and other non-weight layers in a ResNet block where l
is the layer index, then for an input volume xl−1 at the (l + 1)th layer, the output volume is
given by equation below.

xl = Hl (xl−1) + xl−1 (3.1)

To form deeper networks, layers are added as identity mappings such that a deeper
model should not have training error greater than its corresponding shallower version. When
deeper layers are used in a model, the gradient computed at the final layer gets diminished
by the time it reaches initial layers of the networks during backpropagation. Having a

20



Chapter 3 Architectural Overview of Convolution Neural Networks

3x3,64

3x3,64

 !"#

$%&'

 !"#

1x1,64

1x1,256

 !"#

()$&'

 !"#

3x3,64

 !"#

Figure 3.4: Building Blocks of ResNet, 2015 trained on ImageNet dataset. Left: with 2
convolution layers. Right: with 2 convolution layers including a bottleneck layer.

shortcut connection over some of the parametric layers helps in the efficient flow of the
gradients during backpropagation as it can flow directly to a layer backwards by skipping
these parametric layers. When shortcut connections are not used, the flow of gradients in
backpropagation can cause trouble due to non-linear activation functions involved. A new
regularization layer called Batch-Normalization layer is used in the residual modules which
are generally preferred over Dropout for better performance. Batch-Normalization layer
normalizes the input batch before forwarding it to the next layer so that the batches to each
of these layers corresponds to similar distribution. If Batch-Normalization is not used, then
with the change of parameter values, the distribution of input values to a layer also changes
and the network takes longer to train. Even though ResNet can be much deeper compared
to VGGNet, the size of the architecture is substantially smaller due to the presence of global
average pooling layer which produces output directly instead of fully-connected layers which
contain a large number of parameters. The version of ResNet which won the ImageNet 2015
competition consisted of 152 layers. A unit residual block in ResNet consists of either 2
convolution layers or 3 convolution layers with a bottleneck convolution layer as shown in
Figure 3.4.

Recent modifications to ResNet architecture have shown promising results for ImageNet
competitions. In one of the changes, the layers present in a building block of ResNet are
reordered such that the activation and regularization layer precede the convolution layer.
This setting of layers before convolution layer is known as pre-activation which improves the
performance achieved by original ResNet modules as shown in Figure 3.5. In another change
to regular ResNet, high dimensional convolution layers are used for building a ResNet block.
This results in the increase of width and decrease of depth of a residual network. This way, a
wide residual network can achieve comparable performance to that of a much deeper residual
network and the issues with training deeper residual networks will not occur. The motivation

21



Chapter 3 Architectural Overview of Convolution Neural Networks

Figure 3.5: ResNet modules Left: without pre-activation. Right: with pre-activation.

behind the inception of a wide residual network is that to achieve a significant performance
improvement in a residual network, the number of layers needs to be doubled. This leads
to the problem of diminishing feature reuse where the features computed at the initial layers
of the residual network fades away when it reaches the deeper layers of the network. This
happens primarily due to a number of parametric multiplication with the input feature map
at each of the parametric layers resulting in the loss of actual feature map. Wide residual
network tackles these problems with a less deep network than the conventional ResNet. For
example, wide residual network with 50-layer achieves better performance than 152-layer
residual network with 3 times fewer layers and is significantly faster.

3.5 DenseNet

DenseNet was introduced in late 2016 and it introduces shortcut connections between every
pair of layers in a feed-forward manner rather than between successive layers as seen in
ResNet. Recent works on convolutional neural network showed that if initial layers are
connected to the deeper layers near the output with shortcut connections, then it is efficient
and takes less time to train. Traditional convolutional neural networks with L layers have L
connectionswhich are sequential in nature, whereasDenseNet with L layers hasL (L+ 1) /2

direct connections between every pair of layers. DenseNet concatenates all the previous
feature maps from 0 to l − 1 layers to be used as an input to lth layer as given in the

22



Chapter 3 Architectural Overview of Convolution Neural Networks

Figure 3.6: An dense block with n dense layers. Each layer takes all preceding feature maps
as input.

equation 3.2. This is in different from ResNet where input feature map is added to the output
of the input feature map through parametric layers in a residual block.

xl = Hl ([x0, x1, ..., xl−1]) (3.2)

All the features before lth layer are effectively preserved while explicitly differentiating
between the features newly added. This concatenation of feature maps learned by different
layers increases the variation in the input for subsequent layers and improves efficiency.
This is the major difference compared to ResNet which makes DenseNet simpler and more
efficient. Figure 3.6 shows an example of dense connectivity between dense layers present
in a dense block.

The concatenation operation is not suitable for variable feature map sizes. Pooling
operation helps to change the size of feature maps. To incorporate pooling in DenseNet,
the network is broken down into multiple densely connected dense blocks. Layers between
dense blocks are called transition layers which perform convolution and pooling. To prevent
the network from becoming too wide and to improve parameter efficiency, a hyper-parameter
k is used as the growth rate of the network. It controls how much new information each
layer contributes to the global state. This global state can be accessed from everywhere in
the network. DenseNet as a sequence of dense block and transition layers.

If the composite function Hl is assumed to produce k feature maps as output, then the
number of feature maps Nfeature−maps at lth layer is given by the equation 3.3.

Nfeature−maps = k × (l − 1) + k0 (3.3)

There are several advantages of using DenseNet. The vanishing gradient problem is
alleviated as each layer has access to every other layer in the network, the gradients computed
in backpropagation stage can propagate to initial layers without getting diminished.
DenseNet also encourages feature re-use and feature propagation which was a problem in
the case of ResNet with very large (> 1000) number of layers. This is due to the dense

23



connectivity of layers in DenseNet where the features computed at earlier layers can be
used in deeper layers without any loss. The feature map of all the previous layers are
concatenated and thus preserved for use as input to the next layer. DenseNet has better
parameter efficiency and as the flow of information and gradient in the network is better than
compared to previous architectures, they are easier to train. There are different variations
of DenseNet available either with a bottleneck or compression layer which further improves
the performance of DenseNet.



Chapter 4

Depth Estimation using Fully
Convolutional Architecture

4.1 Proposed Methodology

This section presents a fully convolutional architecture for monocular depth estimation
using single RGB image. The proposed framework is a sequence of two modules. A deep
convolutional network is first employed to extract the feature map. It can be realized that the
output map of a deep CNN usually possesses very low spatial resolution as compared to that
of the input resolution. It works well for any classification task, where the low resolution
map is usually fed into either a fully-connected layer or an equivalent convolutional layer to
predict the desired object class. In contrast to this, a regression task, such as depth estimation,
requires at-least a minimum higher resolution output, where the objects at different depth
should be precisely distinguished. Accordingly, we suggest a simple yet efficient mechanism
to up-sample the low-resolution images with minimal parameter overhead.

A number of deeper architectures have been reported over the last few years. We
embed the Densely Connected Convolutional Networks [8], abbreviated as DenseNet,
to learn the feature representation. Subsequently, few additional “deconvolution layers”
are incorporated to learn the up-samping within the unified framework. The architectural
diagram of our model is depicted in Figure 4.1. All the steps of the proposed architecture
are enumerated in the subsequent paragraphs.

DenseNet. The DenseNet model comprises a number of intermediate layers such that
each layer accepts inputs from all its preceding layers and forwards its output to all the
subsequent layers of the network. Mathematically, the pth layer accepts the feature maps
of all its preceding layers and computes a non-linear mapping function H (p), given by:
xs = Hs ([x0, x1, · · · , xp−1]), where [x0, x1, · · · , xp−1] represents the concatenation of the
feature maps generated by all its preceding layers 0, 1, · · · , p − 1. The DenseNet model is
arranged as a sequence of multiple dense-blocks as shown in Figure 4.1. A dense block
computes a number of composite mapping functions. Each of these functions performs

25



Chapter 4 Depth Estimation using Fully Convolutional Architecture

three consecutive operations: batch normalization followed by a ReLU followed by a 3× 3

convolution. Each 3 × 3 convolutional layer produces a fixed k number of output feature
maps, termed as the growth rate of the network. However, it accepts manymore inputs owing
to the dense connectivity of the model. Therefore, a 1 × 1 bottleneck convolution layer is
employed prior to to the 3× 3 convolution that reduces the input to 4× k feature maps only.
All the output feature maps within a dense block possess the same spatial resolution. To
facilitate more compactness, the concatenated feature map of one dense block is fed into its
next dense block via a transition layer that reduces the spatial resolution of the concatenated
input map by half of its original size; a transition layer performs a batch normalization, a
1×1 convolution and a 2×2 average pooling. An architecture with such dense connectivity
is chosen to facilitate direct connectivity among all the layers and thereby maximizes the
information flow along the network. The original paper of DenseNet [8] prepare four
different models out of which the DenseNet-161 (K=48) performs superior as compared
to others for the ImageNet classification task.

The present work also adopts the DenseNet-161 model for the regression task as
shown in Figure 4.1; it takes an input size of 320 × 240 × 3 (width × height × # input
channels), forwards it though the CNN having four dense blocks, and yields an output size
of 10× 7× 2208 (width × height × # feature maps).

Deconvolution Blocks. The low resolution feature map, obtained by the CNN, needs to
be up-sampled to precisely identify the objects at discrete depth levels. An easiest way
is to incorporate a fully-connected layer to the end of the last convolutional layer of the
DenseNet. The present simulation, if embed a fully connected layer, requires more than 3.4
billion parameters to connect a 10×8×2208 feature map to a 175×127 fc layer. Moreover,
the fully connected layer cannot well exploit the local correlation within the neighborhood
pixels. In contrast to this, we concatenate a network of deconvolution layers towards
the end of the DenseNet to learn the up-sampling within a unified network. Each of the
deconvolution layer performs three sequential operations in a pre-activated arrangement:
⟨Batch Normalization-ReLU-Convolution⟩. ResNets [32] has already shown through
experimentation that such a pre-activated arrangement of convolution performs well across
a DCNN network. Even, the DenseNet model also performs the batch normalization and
ReLU prior to each 3 × 3 and 1 × 1 convolution. In short, the proposed architecture first
applies a sequence of BN-ReLU-Conv operations, via DenseNet, to yield a low resolution
feature map, and then again append a sequence of BN-ReLU-Conv operations to upsample
the feature map size within the same network. The proposed architecture, as shown in
Figure 4.1, first applies a bottleneck layer (1 × 1 convolution) that reduces the number of
feature maps from 2208 to 512, while keeping the same spatial resolution. Then, a total
of four deconvolution blocks (BN-ReLU-Conv5×5,stride = 2) is appended to produce the
desired depth map. It can be noted that more number of deconvolution blocks may be

26



Chapter 4 Depth Estimation using Fully Convolutional Architecture

Figure 4.1: Proposed fully convolutional architecture. Stage (1): DenseNet-161 model
accepts input image of size 320× 240× 3 and produces a feature map of size 10× 7× 2208.
Stage (2): a bootleneck layer reduces the number of featuremaps: 10×7×2208 to 10×7×512
(Green box). Stage (3): a sequence of four deconvolution layer up-samples the spatial
resolution of feature map : 10× 7× 512 to 175× 127 (Deconvolution outputs in red boxes).
Bottom row depicts the the schematic diagram of a Dense Block; DBn represents a Dense
Block with n layers.

required depending on the size of the depth map. The present simulation requires only 5.4
million parameters, to be learned, between a 10 × 8 × 2208 DenseNet output map and a
175× 127 depth map.

Loss function. The choice of the loss function plays a crucial role in any CNN based
optimization task. We simulate the proposed model in equation with minimizing two loss
functions separately that have been extensively used in depth prediction; (i) RMSE loss, (ii)
Reverse Huber (berHu loss).

The RMSE loss minimizes the squared-root euclidean norm between the predicted depth
map (ŷ) and the ground-truth map (y), given by,

RMSE (ŷ − y) =

√√√√ 1

n

n∑
i=1

(ŷ − y)2 (4.1)

27



Chapter 4 Depth Estimation using Fully Convolutional Architecture

where n represents the number of input pixels in one mini-batch over an image.
The berHu loss poses a good trade-off between the L1 norm and L2 norm so as to

provide higher weights to pixels having higher residual. The berHu loss [28, 29] between
the predicted depth map and the ground-truth map can be given as,

berHu (ŷ − y) =

L1 (ŷ − y) if (ŷ − y) ∈ [−t, t]

1
2t
× L2 (ŷ − y) + t2 otherwise

(4.2)

L1 (ŷ − y) = |ŷ − y| (4.3)

L2 (ŷ − y) = ∥ŷ − y∥22 (4.4)

It can be observed that Equation 4.2 is continuous, andmoreover, first order differentiable
at threshold t that decides the switching between L1 to L2. In each step of gradient descent,
t is set as the 20% of the maximal per-batch error, given by, t = 0.2maxi (|ŷi − yi|) , i =
1, 2, · · · , n.

4.2 Experimental Results

This section provides a detailed analysis of the experiments carried out for the proposed
architecture. Our model is implemented using PyTorch1 and trained on a system having
dual Quadro K2200 GPU with 4GB memory. The first stage of our architecture takes
the pre-trained DenseNet-161 model, on ImageNet dataset [7], as initialization. The
second stage, having one bottleneck convolutional layer and four deconvolution blocks are
initialized with weights taken from a normal distribution with 0 mean and 0.02 variance.

NYU Depth Dataset. The proposed model is evaluated on the standard NYU Depth v2 [9]
RGB-D image dataset. It comprises images of multiple indoor scenes taken from aMicrosoft
Kinect depth camera. Moreover, it contains both labeled and raw images for evaluation. The
trainin ang test set, of the raw dataset, comprises 249 and 215 indoor scenes respectively;
each scene contains a number of RGB images as well as its corresponding depth maps.

We consider a subset of the raw dataset that further needs to be preprocessed in
accordance with the depth prediction task. A kinect camera can process a maximum depth
of 10 meters, and hence all the ground-truth depth maps are normalized in the range of 0 to
10. Besides, the spatial resolution of the RGB images (640× 480) is reduced to 320× 240

for our model evaluation. We perform data augmentation to increase the number of training
samples; in particular, we take a total of 5900 training samples to train our model. Prior to
training, all the input images are normalized with the mean and standard deviation of the
ImageNet dataset.

1https://github.com/pytorch/pytorch

28



Data Augmentation. We resort to standard data augmentation techniques to increase the
number of training samples. The input RGB images and corresponding target depth images
are subjected to following data augmentation techniques —

• Scaling: images are scaled randomly with a factor that lies between 1 to 1.5.

• Rotation: images are rotated randomly with an angle that lies between −5◦ to +5◦.

• Flipping: images are flipped randomly with a probability of 0.5.

Although the augmentation is done randomly, it may be noted that the augmentation
value for a specific RGB image and its corresponding depth image is kept same. Data
augmentation helps the model to learn efficiently by adding different variations of the same
training sample.

Architecture Evaluation: Our model is trained using Stochastic Gradient Descent [33] as
the optimization method and berHu, RMSE as the loss functions (Section 4.1). The training
for both the loss functions is done separately and the quantitative results are shown in Table
4.1. The training is performed with a batch-size of 5 and initial learning rate is set to 0.001.
The learning rate is decreased by a factor of 5, when the loss becomes more or remains same
for consecutive 5 epochs. It has been observed that berHu loss produces better qualitative
predictions as compared to RMSE loss. This can be attributed to the fact that berHu is
observed to give better convergence in comparison to RMSE. Also, in terms of training loss,
berHu outperforms RMSE. This can be better visualized in Figure 4.2, which represents the
epoch-wise loss values for both the loss functions. The resolution for the predicted depth
image of our proposed model is taken as 175 × 127. Deconvolution network containing 4

deconvolution layers enhances the depth image from low resolution to high resolution. The
prediction is done on the standard labeled test dataset containing 654 images. The predicted
depth images are then compared with ground truth images for quantitative evaluation using
standard error metrics defined in previous depth estimation works [14, 19, 20, 24, 34].
Table 4.1 reports our model performance as compared to other state-of-the-art models.
It can be observed that our model outperforms existing state-of-the-art techniques with
fewer training samples. The predicted depth images obtained using berHu loss function is
delineated in Figure 4.3. It can be noticed that our model exhibits remarkable visual quality
for the predicted depth images.

The proposed architechture, including the DenseNet and deconvolution blocks, has a
total of 167 parametric layers. Also, our model contains very less parameters as compared
to state-of-the-art models. The number of parameters in our model (31 million) is far less as
comapred to Eigen et al. [20] (218 million).



Chapter 4 Depth Estimation using Fully Convolutional Architecture

NYU Depth V2 lower is better higher is better
rel rms rms(log) log10 δ1 δ2 δ3

Karsch et al. [15] 0.374 1.12 - 0.134 - - -
Ladicky et al. [14] - - - - 0.542 0.829 0.941
Liu et al. [18] 0.335 1.06 - 0.127 - - -
Li et al. [34] 0.232 0.821 - 0.094 0.621 0.886 0.968
Liu et al. [24] 0.230 0.824 - 0.095 0.614 0.883 0.971
Wang et al. [25] 0.220 0.745 0.262 0.094 0.605 0.890 0.970
Eigen et al. [19] 0.215 0.907 0.285 - 0.611 0.887 0.971

Roy and Todorovic [23] 0.187 0.744 - 0.078 - - -
Eigen and Fergus [20] 0.158 0.641 0.214 - 0.769 0.950 0.988

Proposed method (RMSE) 0.159 0.549 0.213 0.064 0.791 0.946 0.984
Proposed method (berHu) 0.153 0.549 0.208 0.062 0.799 0.950 0.985

Table 4.1: Comparative analysis of various methods on NYU Depth V2 dataset.

Figure 4.2: Training Loss Curve for RMSE and berHu loss functions.

30



Chapter 4 Depth Estimation using Fully Convolutional Architecture

(a) (b) (c) (d)

Figure 4.3: Prediction results of sample images by our proposed architecture on NYUDepth
V2 dataset. The figure shows (a) input image (b) predicted depth image (c) ground depth
image (d) absolute error map. For better comparison, all the colormaps are scaled equally.

31



Chapter 5

Conclusion

This chapter summarizes the work that has been done for the thesis. The primary focus
of the work is to devise a deep fully-convolutional architecture based on transfer learning
approach to estimate depth from a monocular image. An architecture based on DenseNet [8]
is proposed which is a sequence of two modules. The first module consists of DenseNet
architecture pre-trained on ImageNet [7] dataset where the final full-connected layer is
removed. The second module consists of a bottleneck layer and four deconvolution blocks
joined to the output of the first module. DenseNet is preferred over earlier CNN architectures
such as ResNet [5], VGGNet [22], etc. DenseNet requires fewer parameters for optimization
and supports feature-reuse, feature-propagation. The dense connectivity of layers in a
dense block speeds up the learning process. Earlier CNN architectures required more than
100K for convergence in depth estimation task for NYU Depth V2 dataset. The proposed
architecture requires only 5900 of training samples for producing low RMSE value than the
state-of-the-art architecture. These training samples belong to different scenes provided in
NYU Depth V2 dataset. Random augmentations are applied to incorporate variations in
the training data. Deconvolution blocks are used in the proposed architecture to generate
the final depth map of the input image. It consists of batch-normalization, ReLU and
deconvolution layers in order. The feature map generated by the first module has a low
spatial resolution which needs to be enhanced for comparison with ground truth values and
inferring depth in real-time scenarios. The order of layers in a deconvolution block follows
a pre-activation style which gives better performance compared to no pre-activation style
as observed in He et al. [32]. Experimental results have shown faster convergence with the
pre-activation style of layer ordering. Also, instead of simply upscaling the low-resolution
feature map, 5x5 filters are used to learn the mapping from low to high-resolution feature
map. The proposed architecture is optimized on both berHu and RMSE as an objective
function. Using berHu over RMSE leads to faster convergence as the L1 distance between
two pixels is weighted heavily instead of L2 distance as seen in RMSE. The proposed
architecture does not use any kind of pre-processing like CRF on the resultant depth image.

32



Scope for Further Research

In this thesis, depth is estimated from monocular images. The depth image contains the
relative position of the objects from a viewpoint with 10m as the maximum distance. The
number of training samples may be increased with augmentations to further strengthen the
capacity of the proposed architecture. Outdoor depth datasets such as Make3D [12] and
KITTI [35] may be used for training the architecture. Further research may be carried out
by using depth image in a Simultaneous Localization and Mapping (SLAM) framework for
generating the 3D structure of an environment on the fly. Obstacle detection is one another
task where depth image may be used to infer the location of the objects in the scene.



References

[1] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning applied to document
recognition,” Proceedings of the IEEE, vol. 86, no. 11, pp. 2278–2324, 1998.

[2] D. H. Hubel and T. N. Wiesel, “Receptive fields and functional architecture of monkey striate cortex,”
The Journal of physiology, vol. 195, no. 1, pp. 215–243, 1968.

[3] B. Xu, N. Wang, T. Chen, and M. Li, “Empirical evaluation of rectified activations in convolutional
network,” arXiv preprint arXiv:1505.00853, 2015.

[4] N. Srivastava, G. E. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov, “Dropout: a simple way
to prevent neural networks from overfitting.” Journal of Machine Learning Research, vol. 15, no. 1, pp.
1929–1958, 2014.

[5] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” in Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition, 2016, pp. 770–778.

[6] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep network training by reducing internal
covariate shift,” arXiv preprint arXiv:1502.03167, 2015.

[7] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “Imagenet: A large-scale hierarchical image
database,” inComputer Vision and Pattern Recognition, 2009. CVPR 2009. IEEE Conference on. IEEE,
2009, pp. 248–255.

[8] G. Huang, Z. Liu, K. Q. Weinberger, and L. van der Maaten, “Densely connected convolutional
networks,” arXiv preprint arXiv:1608.06993, 2016.

[9] N. Silberman, D. Hoiem, P. Kohli, and R. Fergus, “Indoor segmentation and support inference from rgbd
images,” Computer Vision–ECCV 2012, pp. 746–760, 2012.

[10] D. Hoiem, A. A. Efros, and M. Hebert, “Geometric context from a single image,” in Computer Vision,
2005. ICCV 2005. Tenth IEEE International Conference on, vol. 1. IEEE, 2005, pp. 654–661.

[11] A. Saxena, S. H. Chung, and A. Y. Ng, “Learning depth from single monocular images,” in NIPS, vol. 18,
2005, pp. 1–8.

[12] A. Saxena, M. Sun, and A. Y. Ng, “Make3d: Learning 3d scene structure from a single still image,” IEEE
transactions on pattern analysis and machine intelligence, vol. 31, no. 5, pp. 824–840, 2009.

[13] B. Liu, S. Gould, and D. Koller, “Single image depth estimation from predicted semantic labels,” in
Computer Vision and Pattern Recognition (CVPR), 2010 IEEE Conference on. IEEE, 2010, pp.
1253–1260.

34



References

[14] L. Ladicky, J. Shi, and M. Pollefeys, “Pulling things out of perspective,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, 2014, pp. 89–96.

[15] K. Karsch, C. Liu, and S. Kang, “Depth extraction from video using non-parametric sampling,”Computer
Vision–ECCV 2012, pp. 775–788, 2012.

[16] C. Liu, J. Yuen, and A. Torralba, “Sift flow: Dense correspondence across scenes and its applications,”
IEEE transactions on pattern analysis and machine intelligence, vol. 33, no. 5, pp. 978–994, 2011.

[17] J. Konrad, M. Wang, and P. Ishwar, “2d-to-3d image conversion by learning depth from examples,”
in Computer Vision and Pattern Recognition Workshops (CVPRW), 2012 IEEE Computer Society
Conference on. IEEE, 2012, pp. 16–22.

[18] M. Liu, M. Salzmann, and X. He, “Discrete-continuous depth estimation from a single image,” in
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2014, pp. 716–723.

[19] D. Eigen, C. Puhrsch, and R. Fergus, “Depth map prediction from a single image using a multi-scale deep
network,” in Advances in neural information processing systems, 2014, pp. 2366–2374.

[20] D. Eigen and R. Fergus, “Predicting depth, surface normals and semantic labels with a common
multi-scale convolutional architecture,” in Proceedings of the IEEE International Conference on
Computer Vision, 2015, pp. 2650–2658.

[21] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with deep convolutional neural
networks,” in Advances in neural information processing systems, 2012, pp. 1097–1105.

[22] K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale image recognition,”
arXiv preprint arXiv:1409.1556, 2014.

[23] A. Roy and S. Todorovic, “Monocular depth estimation using neural regression forest,” in Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, 2016, pp. 5506–5514.

[24] F. Liu, C. Shen, and G. Lin, “Deep convolutional neural fields for depth estimation from a single
image,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2015,
pp. 5162–5170.

[25] P. Wang, X. Shen, Z. Lin, S. Cohen, B. Price, and A. L. Yuille, “Towards unified depth and semantic
prediction from a single image,” in Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, 2015, pp. 2800–2809.

[26] A. Chakrabarti, J. Shao, andG. Shakhnarovich, “Depth from a single image by harmonizing overcomplete
local network predictions,” inAdvances in Neural Information Processing Systems, 2016, pp. 2658–2666.

[27] I. Laina, C. Rupprecht, V. Belagiannis, F. Tombari, and N. Navab, “Deeper depth prediction with fully
convolutional residual networks,” in 3D Vision (3DV), 2016 Fourth International Conference on. IEEE,
2016, pp. 239–248.

[28] A. B. Owen, “A robust hybrid of lasso and ridge regression,” Contemporary Mathematics, vol. 443, pp.
59–72, 2007.

[29] L. Zwald and S. Lambert-Lacroix, “The berhu penalty and the grouped effect,” arXiv preprint
arXiv:1207.6868, 2012.

35



References

[30] D. G. Lowe, “Distinctive image features from scale-invariant keypoints,” International journal of
computer vision, vol. 60, no. 2, pp. 91–110, 2004.

[31] N. Dalal and B. Triggs, “Histograms of oriented gradients for human detection,” in Computer Vision and
Pattern Recognition, 2005. CVPR 2005. IEEE Computer Society Conference on, vol. 1. IEEE, 2005,
pp. 886–893.

[32] K. He, X. Zhang, S. Ren, and J. Sun, “Identity mappings in deep residual networks,” in European
Conference on Computer Vision. Springer, 2016, pp. 630–645.

[33] L. Bottou, “Large-scale machine learning with stochastic gradient descent,” in Proceedings of
COMPSTAT’2010. Springer, 2010, pp. 177–186.

[34] B. Li, C. Shen, Y. Dai, A. van den Hengel, and M. He, “Depth and surface normal estimation from
monocular images using regression on deep features and hierarchical crfs,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, 2015, pp. 1119–1127.

[35] A. Geiger, P. Lenz, C. Stiller, and R. Urtasun, “Visionmeets robotics: The kitti dataset,” The International
Journal of Robotics Research, vol. 32, no. 11, pp. 1231–1237, 2013.

0This reference format follows ASME style. You are advised to follow one reference format of any
dominant journal of your field.

36


